Background: SDS-PAGE followed by in-gel digestion (IGD) is a popular workflow in mass spectrometry-based proteomics. In GeLC-MS/MS, a protein lysate of a biological sample is separated by SDS-PAGE and each gel lane is sliced in 5-20 slices which, after IGD, are analyzed by LC-MS/MS. The database search results for all slices of a biological sample are combined yielding global protein identification and quantification for each sample. In large scale GeLC-MS/MS experiments the manual processing steps including washing, reduction and alkylation become a bottleneck. Here we introduce the whole gel (WG) procedure where, prior to gel slice cutting, the processing steps are carried out on the whole gel.
Results: In two independent experiments human HCT116 cell lysate and mouse tumor tissue lysate were separated by 1D SDS PAGE. In a back to back comparison of the IGD procedure and the WG procedure, both protein identification (>80% overlap) and label-free protein quantitation (R2=0.94) are highly similar between procedures. Triplicate analysis of the WG procedure of both HCT116 cell lysate and formalin-fixed paraffin embedded (FFPE) tumor tissue showed identification reproducibility of >88% with a CV<20% on protein quantitation.
Conclusions: The whole gel procedure allows for reproducible large-scale differential GeLC-MS/MS experiments, without a prohibitive amount of manual processing and with similar performance as conventional in-gel digestion. This procedure will especially enable clinical proteomics for which GeLC-MS/MS is a popular workflow and sample numbers are relatively high.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656797 | PMC |
http://dx.doi.org/10.1186/1477-5956-11-17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!