Background: It has been shown that nanomaterials (NMs) are able to translocate to secondary tissues one of the important being the kidneys. Oxidative stress has been implicated as a possible mechanism for NM toxicity, hence effects on the human renal proximal tubule epithelial cells (HK-2) treated with a panel of engineered nanomaterials (NMs) consisting of two zinc oxide particles (ZnO - coated - NM 110 and uncoated - NM 111), two multi walled carbon nanotubes (MWCNT) (NM 400 and NM 402), one silver (NM 300) and five TiO2 NMs (NM 101, NRCWE 001, 002, 003 and 004) were evaluated.
Methods: In order to assess the toxicological impact of the engineered NMs on HK-2 cells - WST-1 cytotoxicity assay, FACSArray, HE oxidation and the comet assays were utilised. For statistical analysis, the experimental values were compared to their corresponding controls using an ANOVA with Tukey's multiple comparison.
Results: We found the two ZnO NMs (24 hr LC50 - 2.5 μg/cm2) and silver NM (24 hr LC50 - 10 μg/cm2) were highly cytotoxic to the cells. The LC50 was not attained in the presence of any of the other engineered nanomaterials (up to 80 μg/cm2). All nanomaterials significantly increased IL8 and IL6 production. Meanwhile no significant change in TNF-α or MCP-1 was detectable. The most notable increase in ROS was noted following treatment with the Ag and the two ZnO NMs. Finally, genotoxicity was measured at sub-lethal concentrations. We found a small but significant increase in DNA damage following exposure to seven of the ten NMs investigated (NM 111, NRCWE 001 and NRCWE 003 being the exception) with this increase being most visible following exposure to Ag and the positively charged TiO2.
Conclusions: While the NMs could be categorised as low and highly cytotoxic, sub-lethal effects such as cytokine production and genotoxicity were observed with some of the low toxicity materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648395 | PMC |
http://dx.doi.org/10.1186/1471-2369-14-96 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFSci Data
January 2025
Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong.
Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!