Neurons in primary visual cortex of many mammals are clustered according to their preference to stimulus parameters such as orientation and spatial frequency. Nevertheless, responses to complex visual stimuli are highly heterogeneous between adjacent neurons. To investigate the relation between these observations, we recorded from pairs of neighboring neurons in area 17 of anesthetized cats in response to stimuli of differing complexity: sinusoidal drifting gratings, binary dense noise, and natural movies. Comparisons of the tuning curves revealed similar orientation and direction preferences for neighboring neurons, but large differences in preferred phase, direction selectivity, and tuning width of spatial frequency. No pair was similar across all tuning properties. The neurons' firing rates averaged across multiple stimulus repetitions (the "signal") were also compared. Binned between 10 and 200 ms, the correlation between these signals was close to zero in the median across all pairs for all stimulus classes. Signal correlations agreed poorly with differences in tuning properties, except for receptive field offset and relative modulation (i.e., the strength of phase modulation). Nonetheless, signal correlations for different stimulus classes were well correlated with each other, even for gratings and movies. Conversely, trial-to-trial fluctuations (termed "noise") were poorly correlated between neighboring neurons, suggesting low degrees of common input. In response to gratings and visual noise, signal and noise correlations were well correlated with each other, but less so for responses to movies. These findings have relevance for our understanding of the processing of natural stimuli in a functionally heterogeneous cortical network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619576 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.4071-12.2013 | DOI Listing |
Mucosal Immunol
December 2024
Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK. Electronic address:
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Engineering Research Center of Nondestructive Testing and Structural Integrity Evaluation, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049 China.
Over the past decade, most of researches on the communication between the neurons are based on synapses. However, the changes in action potentials in neurons may produce complex electromagnetic fields in the media, which may also have an impact on the electrical activity of neurons. To explore this factor, we construct a two-layer neuronal network composed of identical Hindmarsh-Rose neurons.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Center for Research, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089 India.
This study delves into the examination of a network of adaptive synapse neurons characterized by a small-world network topology connected through electromagnetic flux and infused with randomness. First, this research extensively explores the existence of the global multi-stability of a single adaptive synapse-based neuron model with magnetic flux. The non-autonomous neuron model exhibits periodically switchable equilibrium states that are strongly related to the transitions between stable and unstable points in every whole periodic cycle, leading to the creation of global multi-stability.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction of light between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1.
View Article and Find Full Text PDFPLoS One
December 2024
Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, Sant Joan d'Alacant, Alicante, Spain.
Fasciclin 2 (Drosophila NCAM) is a homophilic Cell Adhesion Molecule expressed at moderate levels in the proliferating epithelial cells of imaginal discs, where it engages EGFR in a cell autonomous auto-stimulatory loop that promotes growth along larval development. In addition, Fasciclin 2 is expressed at high levels in the pre-differentiating cells of imaginal discs. Gain-of-function genetic analysis shows that Fasciclin 2 acts as a non-cell autonomous repressor of EGFR when high expression levels are induced during imaginal disc growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!