An interplay between electrostatic and polar interactions in peptide hydrogels.

Biopolymers

Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201.

Published: April 2013

Inherent chemical programmability available in peptide-based hydrogels has allowed diversity in the development of these materials for use in biomedical applications. Within the 20 natural amino acids, a range of chemical moieties are present. Here we used a mixing-induced self-assembly of two oppositely charged peptide modules to form a peptide-based hydrogel. To investigate electrostatic and polar interactions in the hydrogel, we replace amino acids from the negatively charged acidic glutamic acid (E) to the uncharged polar glutamine (Q) on a negatively charged peptide module, while leaving the positively charged module unchanged. Using dynamic rheology, the mechanical properties of each hydrogel were investigated. It was found that the number, but not the location, of electrostatic interactions (E residues) dictate the elastic modulus (G') of the hydrogel, compared to polar interactions (Q residues). Increased electrostatic interactions also promote faster peptide assembly into the hydrogel matrix, and result in the decrease of T2 relaxation times of H2 O and trifluoroacetic acid. Small-angle X-ray scattering (SAXS) showed that changing from electrostatic to polar interactions affects the ability to form fibrous networks: from the formation of elongated fibers to no fiber assembly. This study reveals the systematic effects that the incorporation of electrostatic and polar interactions have when programmed into peptide-based hydrogel systems. These effects could be used to design peptide-based biomaterials with predetermined properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869455PMC
http://dx.doi.org/10.1002/bip.22194DOI Listing

Publication Analysis

Top Keywords

polar interactions
20
electrostatic polar
16
amino acids
8
charged peptide
8
peptide-based hydrogel
8
negatively charged
8
electrostatic interactions
8
interactions residues
8
interactions
7
polar
6

Similar Publications

Plant extracts and bacterial biofilm are acknowledged to offer impressive corrosion-inhibitory activities. However, anticorrosive properties of their combination are still less reported. Thus, in the present study, we aimed to evaluate the corrosion inhibition efficiency of Saccharum officinarum bagasse (SOB) plant extract, Pseudomonas chlororaphis (P.

View Article and Find Full Text PDF

Photoelasticity of crystals with the scheelite structure: quantum mechanical calculations.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.

We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.

View Article and Find Full Text PDF

The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.

View Article and Find Full Text PDF

Macrophages play a crucial role in the immune response during allograft rejection in organ transplantation. Therefore, our study aimed to explore the genomic features of macrophages in mouse heart transplants and use single-cell RNA sequencing to investigate Galectin-9 (Gal-9, Lgals9), a lectin that can mediate the activation and differentiation of immune cells through ligand-receptor interactions, and the effects of its regulation in transplantation. We discovered a new subset of macrophages called "Myoz2+ macrophages", which specifically expressed genes related to myocardial contraction.

View Article and Find Full Text PDF

Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!