Human embryonic stem cells (hESCs) are uniquely endowed with a capacity for both self-renewal and multilineage differentiation. The aim of this investigation was to determine if short periods of cyclic mechanical strain enhanced dexamethasone, ascorbic acid, and β-glycerophosphate (triple-supplement)-induced osteogenesis and bone nodule formation by hESCs. Colonies were cultured for 21 days and divided into control (no stretch) and three treatment groups; these were subjected to in-plane deformation of 2% for 5 s (0.2 Hertz) every 60 s for 1 h on alternate days in BioFlex plates linked to a Flexercell strain unit over the following periods (day 7-13), (day 15-21), and (day 7-21). Numerous bone nodules were formed, which stained positively for osteocalcin and type I collagen; in addition, MTS assays for cell number as well as total collagen assays showed a significant increase in the day 7-13 group compared to controls and other treatment groups. Alizarin Red staining further showed that cyclic mechanical stretching significantly increased the nodule size and mineral density between days 7-13 compared to control cultures and the other two experimental groups. We then performed a real-time polymerase chain reaction (PCR) microarray on the day 7-13 treatment group to identify mechanoresponsive osteogenic genes. Upregulated genes included the transcription factors RUNX2 and SOX9, bone morphogenetic proteins BMP1, BMP4, BMP5, and BMP6, transforming growth factor-β family members TGFB1, TGFB2, and TGFB3, and three genes involved in mineralization-ALPL, BGLAP, and VDR. In conclusion, this investigation has demonstrated that four 1-h episodes of cyclic mechanical strain acted synergistically with triple supplement to enhance osteogenesis and bone nodule formation by cultured hESCs. This suggests the development of methods to engineer three-dimensional constructs of mineralized bone in vitro, could offer an alternative approach to osseous regeneration by producing a biomaterial capable of providing stable surfaces for osteoblasts to synthesize new bone, while at the same time able to be resorbed by an osteoclastic activity-in other words, one that can recapitulate the remodeling dynamics of a naturally occurring bone matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761424PMC
http://dx.doi.org/10.1089/ten.TEA.2012.0308DOI Listing

Publication Analysis

Top Keywords

cyclic mechanical
16
mechanical strain
12
osteogenesis bone
12
bone nodule
12
nodule formation
12
day 7-13
12
short periods
8
periods cyclic
8
bone
8
human embryonic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!