Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1056/NEJMicm1205716 | DOI Listing |
Sci Rep
December 2024
Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.
The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Republic of Korea.
Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!