Development of 2'-substituted (2S,1'R,2'S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists.

J Med Chem

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.

Published: May 2013

A series of 2'-substituted analogues of the selective NMDA receptor ligand (2S,1'R,2'S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized, and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2'-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2'-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689883PMC
http://dx.doi.org/10.1021/jm400346aDOI Listing

Publication Analysis

Top Keywords

nmda receptor
20
receptor agonists
8
substituents 2'-position
8
agonist activity
8
receptor subtypes
8
receptor
7
nmda
5
development 2'-substituted
4
2'-substituted 2s1'r2's-2-carboxycyclopropylglycine
4
2s1'r2's-2-carboxycyclopropylglycine analogues
4

Similar Publications

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood.

View Article and Find Full Text PDF

Pharmacotherapy plays a crucial role in treating attention-deficit/ hyperactivity disorder (ADHD). However, current medications for ADHD have limitations and potential adverse effects. Glutamate, a neurotransmitter that directly and indirectly modulates dopamine neurotransmission, is considered a new therapeutic target for ADHD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia worldwide. AD brains are characterized by the accumulation of amyloid-β peptides (Aβ) that bind Cu and have been associated with several neurotoxic mechanisms. Although the use of copper chelators to prevent the formation of Cu-Aβ complexes has been proposed as a therapeutic strategy, recent studies show that copper is an important neuromodulator that is essential for a neuroprotective mechanism mediated by Cu binding to the cellular prion protein (PrP).

View Article and Find Full Text PDF

Lutein Exerts Antioxidant and Neuroprotective Role on Schizophrenia-Like Behaviours in Mice.

Int J Dev Neurosci

February 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

Schizophrenia is an esteemed neuropsychiatric condition delineated by the manifestation which role of the N-methyl-D-aspartate receptor (NMDAR) is important. Lutein administration exhibits protective effects via NMDA receptors. Thus, the main goal of this research was to investigate how lutein can possibly act as an antioxidant and provide protection for the brain against schizophrenia-like behaviours in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!