Aims: Desmoid-type fibromatosis (DF) is a rare benign myofibroblastic neoplasm of the connective tissue that is unable to metastasize but is associated with a high local recurrence rate. Nuclear β-catenin is the most commonly used histological marker of DF; however, clinical and biological predictive markers guiding the treatment and follow-up of DF are still lacking. Normally, β-catenin is regulated by the cytoplasmic multiprotein complex of adenomatous polyposis coli (APC), axin, casein kinase 1α (CK1α), and glycogen synthase kinase 3β (GSK-3β); this phosphorylates and degrades β-catenin, which would otherwise translocate to the nucleus. The aim of this study was to analyse the expression and localization of the β-catenin-protein complex of the Wnt pathway in cells isolated from DF patients.

Methods And Results: We isolated cells from biopsies of DF patients, and demonstrated, by immunofluorescence and immunoblot analyses, that it is almost exclusively nuclear GSK-3β that colocalizes and interacts with β-catenin. The nuclear translocation of β-catenin and GSK-3β is not correlated with CTNNB1 mutations. In DF samples, the multiprotein complex is disrupted, as the cytoplasmic localization of APC and axin makes interaction with the nuclear β-catenin and GSK-3β impossible.

Conclusions: Our data suggest that GSK-3β is an additional DF marker with an important role in the aetiopathogenesis of this entity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/his.12133DOI Listing

Publication Analysis

Top Keywords

nuclear gsk-3β
8
desmoid-type fibromatosis
8
nuclear β-catenin
8
multiprotein complex
8
apc axin
8
β-catenin gsk-3β
8
β-catenin
6
nuclear
5
gsk-3β
5
gsk-3β segregation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!