Plutonium (Pu) adsorption to and desorption from mineral phases plays a key role in controlling the environmental mobility of Pu. Here we assess whether the adsorption behavior of Pu at concentrations used in typical laboratory studies (≥10(-10) [Pu] ≤ 10(-6) M) are representative of adsorption behavior at concentrations measured in natural subsurface waters (generally <10(-12) M). Pu(V) sorption to Na-montmorillonite was examined over a wide range of initial Pu concentrations (10(-6)-10(-16) M). Pu(V) adsorption after 30 days was linear over the wide range of concentrations studied, indicating that Pu sorption behavior from laboratory studies at higher concentrations can be extrapolated to sorption behavior at low, environmentally relevant concentrations. Pu(IV) sorption to montmorillonite was studied at initial concentrations of 10(-6)-10(-11) M and was much faster than Pu(V) sorption over the 30 day equilibration period. However, after one year of equilibration, the extent of Pu(V) adsorption was similar to that observed for Pu(IV) after 30 days. The continued uptake of Pu(V) is attributed to a slow, surface-mediated reduction of Pu(V) to Pu(IV). Comparison between rates of adsorption of Pu(V) to montmorillonite and a range of other minerals (hematite, goethite, magnetite, groutite, corundum, diaspore, and quartz) found that minerals containing significant Fe and Mn (hematite, goethite, magnetite, and groutite) adsorbed Pu(V) faster than those which did not, highlighting the potential importance of minerals with redox couples in increasing the rate of Pu(V) removal from solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es305257s | DOI Listing |
Small
December 2024
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China.
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited.
View Article and Find Full Text PDFLangmuir
December 2024
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
This study explores the bubble nucleation process and heat transfer characteristics on nanostructured solid surfaces with mixed-wettable pillars using molecular dynamics simulations. Five different surfaces were designed by varying the wettability of the central pillars while keeping the lateral pillars hydrophilic. The nucleation behavior of argon bubbles was observed to differ significantly across these surfaces due to the combined effects of nanostructuring and mixed wettability.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China. Electronic address:
The spontaneous adsorption of proteins onto nanoparticles, known as the protein corona, provides a unique perspective for designing protein-sensing biosensors. This study proposes a tailored protein corona method mediated by Tween-20 and develops a reverse-capture approach for protein quantification assays. The protein-coated microplate captures titanium dioxide nanosheets (TiO-NS) in a phosphate buffer containing Tween-20 and generates fluorescence signals via the photocatalytic reduction of resazurin to resorufin, thereby indicating the amount of protein.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.
Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China.
RuO has been considered as a promising, low-cost, and highly efficient catalyst in the acidic oxygen evolution reaction (OER). However, it suffers from poor stability due to the inevitable involvement of the lattice oxygen mechanism (LOM). Here, we construct a unique metallene-based core-skin structure and unveil that the OER pathway of atomic RuO skin can be regulated from the LOM to an adsorbate evolution mechanism by altering the core species from metallene oxides to metallenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!