Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion.

Environ Sci Technol

Department of Microbiology and Plant Biology, and Institute for Energy and the Environment, University of Oklahoma, 770 Van Vleet Oval, Norman, Oklahoma 73019, United States.

Published: June 2013

Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 μM SO4/day), but they were found to be roughly twice as fast (∼100 μM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es4006702DOI Listing

Publication Analysis

Top Keywords

fuel
9
diesel fuel
8
carbon steel
8
sulfur diesel
8
rates sulfate
8
sulfate reduction
8
μm so4/day
8
anaerobic hydrocarbon
8
hydrocarbon metabolism
8
independent fuel
8

Similar Publications

Evaluation of anion exchange resin for sorption of selenium (IV) from aqueous solutions.

BMC Chem

January 2025

Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.

In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.

View Article and Find Full Text PDF

This paper reviews evidence about the impact of marketing on ill health. We summarize evidence that marketing practices in six industries (tobacco, alcohol, pharmaceutical, processed food, firearm, and fossil fuel) are causal influences on the occurrence of injury, disease, and premature death. For each industry, we provide a brief overview on the extent of harmful marketing, efforts from each industry to obscure or otherwise conceal the impact of their marketing strategies, and efforts to counter the impact of harmful marketing in these industries.

View Article and Find Full Text PDF

Modeling suction of unsaturated granular soil treated with biochar in plant microbial fuel cell bioelectricity system.

Sci Rep

January 2025

Departamento de Ciencias de la Construcción, Facultad de Ciencias de la Construcción Ordenamiento Territorial, Universidad Tecnológica Metropolitana, Santiago, Chile.

There is an initiative driven by the carbon-neutrality nature of biochar in recent times, where various countries across Europe and North America have introduced perks to encourage the production of biochar for construction purposes. This objective aligns with the zero greenhouse emission targets set by COP27 for 2050. This research work seeks to assess the effectiveness of biochar in soils with varying grain size distributions in enhancing the soil-water characteristic curve (SWCC).

View Article and Find Full Text PDF

The transport, distribution, and budget of anthropogenic I in the Bohai and North Yellow Seas, China.

J Hazard Mater

January 2025

State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:

The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.

View Article and Find Full Text PDF

Evolution of interspecific interactions underlying the nonlinear relationship between active biomass and pollutant degradation capacity in bioelectrochemical systems.

Water Res

December 2024

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

This study proposes a switching operating mode that alternates between microbial fuel cell (MFC) and microbial electrolysis cell (MEC) to restore the biofilm activity and organic pollutant degradation capacity in bioelectrochemical systems (BESs) during prolonged operation. After the model switching, the toluene degradation kinetics in BESs equipped with graphite sheet (GS) and polyaniline@carbon nanotubes (PANI@CNTs) bioanodes were elevated by 2.10 and 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!