Metastatic renal cell carcinoma (RCC) is an incurable disease in clear need of new therapeutic interventions. In early-phase clinical trials, the cytokine IFN-γ showed promise as a biotherapeutic for advanced RCC, but subsequent trials were less promising. These trials, however, focused on the indirect immunomodulatory properties of IFN-γ, and its direct anti-tumor effects, including its ability to kill tumor cells, remains mostly unexploited. We have previously shown that IFN-γ induces RIP1 kinase-dependent necrosis in cells lacking NF-κB survival signaling. RCC cells display basally-elevated NF-κB activity, and inhibiting NF-κB in these cells, for example by using the small-molecule proteasome blocker bortezomib, sensitizes them to RIP1-dependent necrotic death following exposure to IFN-γ. While these observations suggest that IFN-γ-mediated direct tumoricidal activity will have therapeutic benefit in RCC, they cannot be effectively exploited unless IFN-γ is targeted to tumor cells in vivo. Here, we describe the generation and characterization of two novel 'immunocytokine' chimeric proteins, in which either human or murine IFN-γ is fused to an antibody targeting the putative metastatic RCC biomarker CD70. These immunocytokines display high levels of species-specific IFN-γ activity and selective binding to CD70 on human RCC cells. Importantly, the IFN-γ immunocytokines function as well as native IFN-γ in inducing RIP1-dependent necrosis in RCC cells, when deployed in the presence of bortezomib. These results provide a foundation for the in vivo exploitation of IFN-γ-driven tumoricidal activity in RCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629199 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061446 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!