Translocation of cell penetrating peptides on Chlamydomonas reinhardtii.

Biotechnol Bioeng

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

Published: October 2013

Engineering of algal cells by delivering macromolecules through cell wall and plasma membrane presents many difficulties with the conventional methods. Recent research has shown that a new delivery method, namely cell penetrating peptide (CPP), has the ability to translocate into animal, plant, fungal, and bacterial cells. This study reports the apparent translocation of CPPs into algal cells of Chlamydomonas reinhardtii and the successful delivery of the conjugated fluorochrome. Although translocation efficiency was specific to each CPP studied, pVEC (peptide vascular endothelial cadherin) showed the highest translocation efficiency in comparison with penetratin (PEN), trans-activating transcriptional (TAT) peptide, and transportan (TRA). The maximum translocation of pVEC into the algal cell was reached in 15 min of incubation at 25°C. More importantly, translocation with pVEC demonstrated an absence of cytotoxicity. Thus, we suggested that pVEC is an attractive candidate for delivering macromolecules into algal cells for use in industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24935DOI Listing

Publication Analysis

Top Keywords

algal cells
12
cell penetrating
8
chlamydomonas reinhardtii
8
delivering macromolecules
8
translocation efficiency
8
translocation pvec
8
translocation
6
translocation cell
4
penetrating peptides
4
peptides chlamydomonas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!