AI Article Synopsis

  • The study combines experimental electrochemical techniques with theoretical analysis to investigate hydrogen production from weak acids.
  • It utilizes a structural mimic of the active site of NiFe hydrogenases, specifically the compound Ni(xbsms)Ru(C6Me6)Cl(+), as a catalyst.
  • The process of hydrogen evolution involves steps that are characterized by the coupling of proton transfer with electron transfer.

Article Abstract

A combined electrochemical and theoretical study suggests that hydrogen evolution from weak acids catalyzed by a structural mimic of the active site of NiFe hydrogenases [Ni(xbsms)Ru(C6Me6)Cl](+) proceeds through proton-coupled electron transfer steps.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc40987bDOI Listing

Publication Analysis

Top Keywords

nife hydrogenases
8
proton-coupled electron
8
electron transfer
8
catalytic hydrogen
4
hydrogen production
4
production ni-ru
4
ni-ru mimic
4
mimic nife
4
hydrogenases involves
4
involves proton-coupled
4

Similar Publications

Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H from [NiFe] hydrogenase as a training set.

View Article and Find Full Text PDF

Cyanobacteria-probiotics symbionts for modulation of intestinal inflammation and microbiome dysregulation in colitis.

Proc Natl Acad Sci U S A

December 2024

Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China.

Inflammatory bowel disease (IBD) is often associated with excessive inflammatory response and highly dysregulated gut microbiota. Traditional treatments utilize drugs to manage inflammation, potentially with probiotic therapy as an adjuvant. However, current standard practices often suffer from detrimental side effects, low bioavailability, and unsatisfactory therapeutic outcomes.

View Article and Find Full Text PDF

Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen.

View Article and Find Full Text PDF

Exploiting hydrogenases for biocatalytic hydrogenations.

Chem Commun (Camb)

November 2024

Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, UK.

The ability of hydrogenase enzymes to activate H with excellent selectivity leads to many interesting possibilities for biotechnology driven by H as a clean reductant. Here, we review examples where hydrogenase enzymes have been used to drive native and non-native hydrogenation reactions in solution or as part of a redox cascade on a conductive support, with a focus on the developments we have contributed to this field. In all of the examples discussed, hydrogenation reactions are enabled by coupled redox reactions: the oxidation of H at a hydrogenase active site, linked electronically ( relay clusters in the enzyme and/or conductive support) to the site of a reduction reaction, and we note how this parallels developments in site-separated reactivity in heterogeneous catalysis.

View Article and Find Full Text PDF

[NiFe]-hydrogenases catalyze the reversible activation of H using a unique NiFe(CN)CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!