Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.

Antimicrob Agents Chemother

Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.

Published: July 2013

Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to many antibiotics. Among its primary mechanisms of resistance is expression of a chromosomally encoded AmpC β-lactamase that inactivates β-lactams. The mechanisms leading to AmpC expression in P. aeruginosa remain incompletely understood but are intricately linked to cell wall metabolism. To better understand the roles of peptidoglycan-active enzymes in AmpC expression-and consequent β-lactam resistance-a phenotypic screen of P. aeruginosa mutants lacking such enzymes was performed. Mutants lacking one of four lytic transglycosylases (LTs) or the nonessential penicillin-binding protein PBP4 (dacB) had altered β-lactam resistance. mltF and slt mutants with reduced β-lactam resistance were designated WIMPs (wall-impaired mutant phenotypes), while highly resistant dacB, sltB1, and mltB mutants were designated HARMs (high-level AmpC resistant mutants). Double mutants lacking dacB and sltB1 had extreme piperacillin resistance (>256 μg/ml) compared to either of the single knockouts (64 μg/ml for a dacB mutant and 12 μg/ml for an sltB1 mutant). Inactivation of ampC reverted these mutants to wild-type susceptibility, confirming that AmpC expression underlies resistance. dacB mutants had constitutively elevated AmpC expression, but the LT mutants had wild-type levels of AmpC in the absence of antibiotic exposure. These data suggest that there are at least two different pathways leading to AmpC expression in P. aeruginosa and that their simultaneous activation leads to extreme β-lactam resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697359PMC
http://dx.doi.org/10.1128/AAC.00268-13DOI Listing

Publication Analysis

Top Keywords

β-lactam resistance
16
ampc expression
16
mutants lacking
12
ampc
9
mutants
9
pseudomonas aeruginosa
8
leading ampc
8
expression aeruginosa
8
dacb sltb1
8
mutants wild-type
8

Similar Publications

Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.

View Article and Find Full Text PDF

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!