In the heart, Na/K-ATPase regulates intracellular Na(+) and Ca(2+) (via NCX), thereby preventing Na(+) and Ca(2+) overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular Na(+) and Ca(2+) and investigate mechanisms and physiological consequences involved. Effects of both exogenous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes) were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively; p<0.05, n=6) and all were abolished by Ca(2+)-chelation (EGTA 10mM) or NOS inhibition l-NAME (1mM). Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50=3.8 μM; n=6/grp), via decrease in Km, in PLM(WT) but not PLM(KO) or PLM(3SA) myocytes (where phospholemman cannot be phosphorylated) as measured by whole-cell perforated-patch clamp. Field-stimulation with l-NAME or PKC-inhibitor (2 μM Bis) resulted in elevated intracellular Na(+) (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ± 0.6mM in controls) in SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the presence of l-NAME (and this was reversed by l-arginine), as well as in PLM(3SA) mouse hearts but not PLM(WT) and PLM(KO). We provide physiological and biochemical evidence for a novel regulatory pathway whereby NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na(+) and Ca(2+) overload and arrhythmias. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981027PMC
http://dx.doi.org/10.1016/j.yjmcc.2013.04.013DOI Listing

Publication Analysis

Top Keywords

na+ ca2+
12
nitric oxide
8
oxide regulates
8
regulates cardiac
8
cardiac intracellular
8
intracellular na+
8
ventricular myocytes
8
intracellular na⁺
4
na⁺ ca²⁺
4
ca²⁺ modulating
4

Similar Publications

Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.

View Article and Find Full Text PDF

Enhanced Prediction of CO-Brine Interfacial Tension at Varying Temperature Using a Multibranch-Structure-Based Neural Network Approach.

Langmuir

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!