Glybenclamide is used as a pharmacological tool in studies of mitochondrial functions supposing its main role to block ATP-dependent potassium (KATP) channel. The aim of this study was to test whether glybenclamide might interact with the mitochondrial chloride channels. Mitochondrial membranes, isolated from rat heart muscle, were incorporated into lipid bilayer membrane and single chloride channel currents were measured in 250/50 mM KCl cis/trans solutions. The observed chloride channels (N=11) with mean conductance 120±14 pS were sensitive to glybenclamide, which decreased the open probability (IC50=129 μM) and affected the channel gating kinetics (IC50=12 μM) by perturbing its open state. It did not influence the channel conductance or reversal potential. These results indicate that glybenclamide interacts with chloride channels what should be taken into consideration, when glybenclamide is used as a specific inhibitor of KATP channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2013.04.024 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFBMJ Open
January 2025
Genetics and Molecular Pathology, SA Pathology, North Adelaide, South Australia, Australia
Objectives: To determine the diagnostic yield of cystic fibrosis (CF) using a two-tiered genetic testing approach. Although newborn screening includes CF, this typically only covers a selection of common genetic variants, and with over 2000 reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, we hypothesised that patients will be missed and present clinically later in life.
Design: A retrospective study over a 5-year period (January 2018-December 2022).
Int J Biol Macromol
January 2025
College of Textiles, Donghua University, Shanghai 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. Electronic address:
In recent years, conductive gel materials have attracted extensive attention in the field of flexible electronics because of their excellent elasticity. When constructed as gel fibers, they can adapt to greater deformation, be woven, and be assembled with fabrics to make wearable smart devices without compromising comfort. However, gel fibers reported often exhibit insufficient mechanical properties and poor adaptability to different environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!