Nonexponential distance dependence of the apparent electron-transfer (ET) rate has been reported for a variety of redox proteins immobilized on biocompatible electrodes, thus posing a physicochemical challenge of possible physiological relevance. We have recently proposed that this behavior may arise not only from the structural and dynamical complexity of the redox proteins but also from their interplay with strong electric fields present in the experimental setups and in vivo (J. Am Chem. Soc. 2010, 132, 5769-5778). Therefore, protein dynamics are finely controlled by the energetics of both specific contacts and the interaction between the protein's dipole moment and the interfacial electric fields. In turn, protein dynamics may govern electron-transfer kinetics through reorientation from low to high donor-acceptor electronic coupling orientations. Here we present a combined computational and experimental study of WT cytochrome c and the surface mutant K87C adsorbed on electrodes coated with self-assembled monolayers (SAMs) of varying thickness (i.e., variable strength of the interfacial electric field). Replacement of the positively charged K87 by a neutral amino acid allowed us to disentangle protein dynamics and electron tunneling from the reaction kinetics and to rationalize the anomalous distance dependence in terms of (at least) two populations of distinct average electronic couplings. Thus, it was possible to recover the exponential distance dependence expected from ET theory. These results pave the way for gaining further insight into the parameters that control protein electron transfer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp400832m | DOI Listing |
Curr Protein Pept Sci
January 2025
Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Hyderabad, Telangana- 509 301, India.
Background: Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.
Aim: To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing and methods.
Sex Med
December 2024
Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.
Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.
Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.
EXCLI J
November 2024
Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea.
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the can inhibit key targets involved in HCC progression.
View Article and Find Full Text PDFEuro Surveill
January 2025
RKI-SOEP-2 Study Group is acknowledged at the end of the article.
BackgroundThe first Corona Monitoring Nationwide (RKI-SOEP) study (October 2020-February 2021) found a low pre-vaccine SARS-CoV-2 antibody seroprevalence (2.1%) in the German adult population (≥ 18 years).AimThe objective of this second RKI-SOEP (RKI-SOEP-2) study in November 2021-March 2022 was to estimate the prevalence of SARS-CoV-2-specific anti-spike and/or anti-nucleocapsid (anti-N) IgG antibodies (combined seroprevalence), past infection based on infection-induced seroprevalence (anti-N), and basic immunisation (at least two antigen contacts through vaccination or infection) in individuals aged ≥ 14 years.
View Article and Find Full Text PDFChemistry
January 2025
RIKEN: Rikagaku Kenkyujo, Cluster for Pioneering Research, Hirosawa 2-1, 351-0198, Wako, JAPAN.
Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!