The distribution of nanoparticles in different aqueous environments is a fundamental problem underlying a number of processes, ranging from biomedical applications of nanoparticles to their effects on the environment, health, and safety. Here, we study distribution of carbon nanotubes (CNTs) in two immiscible aqueous phases formed by the addition of polyethylene glycol (PEG) and dextran. This well-defined model system exhibits a strikingly robust phenomenon: CNTs spontaneously partition between the PEG- and the dextran-rich phases according to nanotube's diameter and metallicity. Thermodynamic analysis suggests that this chirality-dependent partition is determined by nanotube's intrinsic hydrophobicity and reveals two distinct regimes in hydrophobicity-chirality relation: a small diameter (<1 nm) regime, where curvature effect makes larger diameter tubes more hydrophobic than small diameter ones, and a large diameter (>1.2 nm) regime, where nanotube's polarizability renders semiconducting tubes more hydrophobic than metallic ones. These findings reveal a general rule governing CNT behaviors in aqueous phase and provide an extremely simple way to achieve spatial separation of CNTs by their electronic structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja402762e | DOI Listing |
Small
January 2025
Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
The design and fabrication of nanocatalysts with high accessibility and sintering resistance remain significant challenges in heterogeneous electrocatalysis. Herein, a novel catalyst is introduced that combines electronic pumping with alloy crystal facet engineering. At the nanoscale, the electronic pump leverages the chemical potential difference to drive electron migration from one region to another, separating and transferring electron-hole pairs.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia.
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.
In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratorio de Física del Plasma, Universidad Nacional de Colombia Sede Manizales, Campus la Nubia, Km 9 via al Magdalena, Manizales 170007, Colombia.
In this study, we research the innovative application of multi-walled carbon nanotubes (MWCNTs) as corrosion inhibitors in Portland cement embedded steel. The physicochemical properties of the dispersion solutions were evaluated, varying the storage time, to analyze their effect on corrosion resistance. Using a dispersion energy of 440 J/g and a constant molarity of 10 mM, stable dispersions were achieved for up to 3 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!