Molecular dynamics simulation by GROMACS using GUI plugin for PyMOL.

J Chem Inf Model

Laboratory of Biomolecular Systems Simulations, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.

Published: May 2013

The molecular models stored as PDB formatted files are static, but most of the biomolecular systems display a dynamic behavior, in other words their conformations depend on time. To get the dynamic model from the static one, one needs to perform the molecular dynamics (MD) simulation using tools like GROMACS. This paper describes functionality of the newly created plugin for PyMOL (the popular and easy to use program for displaying and manipulating molecule models). This plugin enables the easy use of molecular dynamics simulations using GROMACS through a graphic interface. It transfers the results of those calculations and displays them back in PyMOL. All the components of the stack are open source and are available free of charge. This strategy gives researchers easy access to the molecular dynamics PYMOL plugin and creates an opportunity to modify its source when needed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci400071xDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
dynamics simulation
8
plugin pymol
8
molecular
5
simulation gromacs
4
gromacs gui
4
plugin
4
gui plugin
4
pymol
4
pymol molecular
4

Similar Publications

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

Natl Sci Rev

January 2025

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

The high thermopower of ionic thermoelectric (-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of -TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an of 0.

View Article and Find Full Text PDF

Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.

View Article and Find Full Text PDF

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

Hibernation, an adaptive mechanism to extreme environmental conditions, is prevalent among mammals. Its main characteristics include reduced body temperature and metabolic rate. However, the mechanisms by which hibernating animals re-enter deep sleep during the euthermic phase to sustain hibernation remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!