A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combinatorial generation of complexity by redox enzymes in the chaetoglobosin A biosynthesis. | LitMetric

AI Article Synopsis

  • Redox enzymes are crucial for creating complex natural products by facilitating oxidation during biosynthesis; Chaetoglobosin A (1) is synthesized through a hybrid enzyme system from prochaetoglobosin I (2).
  • The study identified five intermediates and clarified the stereochemical process of each oxidation step by manipulating redox enzymes in specific fungal strains and using yeast for expression experiments.
  • Findings suggest that the flexibility of redox enzymes enables multiple biosynthetic pathways, which can help accelerate the understanding of other natural product biosynthesis involving unknown fungal enzymes.

Article Abstract

Redox enzymes play a central role in generating structural complexity during natural product biosynthesis. In the postassembly tailoring steps, redox cascades can transform nascent chemical scaffolds into structurally complex final products. Chaetoglobosin A (1) is biosynthesized by a hybrid polyketide synthase-nonribosomal peptide synthetase. It belongs to the chaetoglobosin family of natural products, comprising many analogs having different degrees of oxidation introduced during their biosynthesis. We report here the determination of the complete biosynthetic steps leading to the formation of 1 from prochaetoglobosin I (2). Each oxidation step was elucidated using Chaetomium globosum strains carrying various combinations of deletion of the three redox enzymes, one FAD-dependent monooxygenase, and two cytochrome P450 oxygenases, and in vivo biotransformation of intermediates by heterologous expression of the three genes in Saccharomyces cerevisiae. Five analogs were identified in this study as intermediates formed during oxidization of 2 to 1 by those redox enzymes. Furthermore, a stereochemical course of each oxidation step was clearly revealed with the absolute configurations of five intermediates determined from X-ray crystal structure. This approach allowed us to quickly determine the biosynthetic intermediates and the enzymes responsible for their formation. Moreover, by addressing the redox enzymes, we were able to discover that promiscuity of the redox enzymes allowed the formation of a network of pathways that results in a combinatorial formation of multiple intermediate compounds during the formation of 1 from 2. Our approach should expedite elucidation of pathways for other natural products biosynthesized by many uncharacterized enzymes of this fungus.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja402828wDOI Listing

Publication Analysis

Top Keywords

redox enzymes
24
enzymes
8
natural products
8
oxidation step
8
redox
7
formation
5
combinatorial generation
4
generation complexity
4
complexity redox
4
enzymes chaetoglobosin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!