Lysophosphatidic acid (LPA) is a ubiquitously present signalling molecule involved in diverse cellular processes such as cell migration, proliferation and differentiation. LPA acts as an autocrine and/or paracrine signalling molecule via different G-protein-coupled LPA receptors (LPARs) that trigger a broad range of intracellular signalling cascades, especially the RHOA pathway. Mounting evidence suggests a crucial role of the LPA/LPAR-axis in cancer cell metastasis and promising studies are underway to investigate the therapeutic potential of LPAR-antagonists. This review summarises current knowledge on how LPA promotes cytoskeletal remodelling to enhance the migratory and invasive properties of cells, which may ultimately contribute to cancer metastasis. Furthermore, we provide comprehensive transcriptome analyses of published microarrays of more than 350 normal tissues and more than 1700 malignant tissues to define the expression signatures of LPARs and the LPA-generating enzymes autotaxin (ATX) and lipase member 1 (LIPI). These analyses demonstrate that ATX is highly expressed in a variety of carcinomas and sarcomas, whereas LIPI is almost exclusively overexpressed in highly aggressive Ewing's sarcomas, which underscores the potential contribution of LPA in metastatic disease. In addition, these analyses show that different cancer entities display distinct expression signatures of LPARs that distinguish them from one another. Finally, we discuss current approaches to specifically target the LPA/LPAR circuits in experimental cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/boc.201300011 | DOI Listing |
Int J Mol Sci
January 2025
School of Applied Sciences, College of Health, Science and Society, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK.
The active metabolite of vitamin D3, calcitriol (1,25D), is widely recognised for its direct anti-proliferative and pro-differentiation effects. However, 1,25D is calcaemic, which restricts its clinical use for cancer treatment. Non-calcaemic agonists of the vitamin D receptor (VDR) could be better candidates for cancer treatment.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.
View Article and Find Full Text PDFTranspl Immunol
January 2025
Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Characteristic alterations in the urinary microbiome, or urobiome, are associated with renal transplant pathology. To date, there has been no direct study of the urobiome during acute allograft rejection. The goal of this study was to determine if unique urobiome alterations are present during acute rejection in renal transplant recipients.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan.
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!