The conservation of unique populations of animals is critical in order to preserve valuable genetic diversity and, where populations are free-living, maintain their irreplaceable influence upon habitat ecology. An accurate assessment of genetic diversity and structure within and between populations is crucial in order to design and implement conservation strategies in natural and domesticated species. Moreover, where it is possible to identify relic populations that are related to a structured breed an ideal opportunity presents itself to model processes that reveal historical factors that have shaped genetic diversity. The origins of native UK mountain and moorland ponies are uncertain, but they may have directly descended from prehistoric populations and potentially harbour specific adaptations to the uplands of Britain and Ireland. To date, there have been no studies of population structure and genetic diversity present within a free-living group of ponies in the Carneddau mountain range of North Wales. Herein, we describe the use of microsatellites and SNPs together with analysis of the mitochondrial control region to quantify the extent and magnitude of genetic diversity present in the feral Carneddau pony and relate this to several recognised British and Irish pony breeds. Our results establish that the feral Carneddau ponies represent a unique and distinctive population that merits recognition as a defined population and conservation priority. We discuss the implications for conservation of this population as a unique pool of genetic diversity adapted to the British uplands and potentially of particular value in maintaining the biodiversity of these habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631405 | PMC |
http://dx.doi.org/10.1002/ece3.507 | DOI Listing |
Sci Rep
December 2024
Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Dakar, 10700, Senegal.
Cowpea is a seed legume, important for food and nutritional security in Africa's arid and semi-arid zones. Despite its importance, cowpea is experiencing a loss of genetic diversity due to climate change. Therefore, this study aimed to evaluate the genetic variability of 33 cowpea mutant collections using 20 SSR and 13 ISSR markers.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFSci Rep
December 2024
Molecular Biology and Genetics Laboratory (LGBM), UFMS - Federal University of Mato Grosso do Sul, Três Lagoas, Brazil.
Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biology, Queen's University, Kingston, ON, Canada.
Genetic diversity can influence fitness components such as survival and reproductive success. Yet the association between genetic diversity and fitness based on neutral loci is sometime very weak and inconsistent, with relationships varying among taxa due to confounding effects of population demography and life history. Fitness-diversity relationships are likely to be stronger and more consistent for genes known to influence phenotypic traits, such as immunity-related genes, and may also depend on the genetic differences between breeding partners.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!