Assessment of the accuracy of pharmacy students' compounded solutions using vapor pressure osmometry.

Am J Pharm Educ

School of Pharmacy, Southern Illinois University Edwardsville, 220University Park Drive, Edwardsville, IL 62026, USA.

Published: April 2013

OBJECTIVE. To assess the effectiveness of using a vapor pressure osmometer to measure the accuracy of pharmacy students' compounding skills. DESIGN. Students calculated the theoretical osmotic pressure (mmol/kg) of a solution as a pre-laboratory exercise, compared their calculations with actual values, and then attempted to determine the cause of any errors found. ASSESSMENT. After the introduction of the vapor pressure osmometer, the first-time pass rate for solution compounding has varied from 85% to 100%. Approximately 85% of students surveyed reported that the instrument was valuable as a teaching tool because it objectively assessed their work and provided immediate formative assessment. CONCLUSIONS. This simple technique of measuring compounding accuracy using a vapor pressure osmometer allowed students to see the importance of quality control and assessment in practice for both pharmacists and technicians.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631733PMC
http://dx.doi.org/10.5688/ajpe77358DOI Listing

Publication Analysis

Top Keywords

vapor pressure
16
pressure osmometer
12
accuracy pharmacy
8
pharmacy students'
8
pressure
5
assessment
4
assessment accuracy
4
students' compounded
4
compounded solutions
4
vapor
4

Similar Publications

Background: Mating disruption (MD) is a worthwhile technique for the control of and in central Europe and Mediterranean areas. MD efficacy is affected by the pheromone release (PR), which in turn is influenced by environmental conditions.

Methods: The effect of weather conditions on PR was evaluated under four different fields in northern Italy.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined seasonal and daily changes in soil CO2 flux (Fc) at Kaziranga National Park between November 2019 and March 2020, identifying pre-monsoon as the peak season for carbon release.
  • Fc showed strong positive correlations with air and soil temperatures, solar radiation, vapor pressure deficit, and photosynthetically active radiation, indicating these elements significantly influence soil respiration rates.
  • Diurnal patterns highlighted higher Fc during daytime hours and lower levels at night, emphasizing how environmental factors affect carbon dynamics in subtropical forests.
View Article and Find Full Text PDF

Kinetically Tailored Chemical Vapor Deposition Approach for Synthesizing High-Quality Large-Area Non-Layered 2D Materials.

Small

January 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Non-layered 2D materials offer unique and more advantageous physicochemical properties than those of conventional 2D layered materials. However, the isotropic chemical bonding nature of non-layered materials hinders their lateral growth, making the synthesis of large-area continuous thin films challenging. Herein, a facile kinetically tailored chemical vapor deposition (KT-CVD) approach is introduced for the synthesis of 2D molybdenum nitride (MoN), a representative non-layered material.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Symmetry Breaking in Twisted Mixed-Dimensional Heterostructure Interfaces for Multifunctional Polarization-Sensitive Photodetection.

ACS Nano

January 2025

Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.

Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!