Image-based screening has become a mature field over the past decade, largely due to the detailed information that can be obtained about compound mode of action by considering the phenotypic effects of test compounds on cellular morphology. However, very few examples exist of extensions of this approach to bacterial targets. We now report the first high-throughput, high-content platform for the prediction of antibiotic modes of action using image-based screening. This approach employs a unique feature segmentation and extraction protocol to quantify key size and shape metrics of bacterial cells over a range of compound concentrations, and matches the trajectories of these metrics to those of training set compounds of known molecular target to predict the test compound's mode of action. This approach has been used to successfully predict the modes of action of a panel of known antibiotics, and has been extended to the evaluation of natural products libraries for the de novo prediction of compound function directly from primary screening data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674180 | PMC |
http://dx.doi.org/10.1039/c3mb70027e | DOI Listing |
Gastro Hep Adv
September 2024
Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania.
Background And Aims: Inadequate bowel preparation which occurs in 25% of colonoscopies is a major barrier to the effectiveness of screening for colorectal cancer. We aim to develop an artificial intelligence (machine learning) algorithm to assess photos of stool output after bowel preparation to predict inadequate bowel preparation before colonoscopy.
Methods: Patients were asked to text a photo of their stool in the commode when they believed that they neared completion of their colonoscopy bowel preparation.
Sensors (Basel)
January 2025
Space Robotics Research Group (SpaceR), Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, L-1855 Luxembourg, Luxembourg.
Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Clinic for Radiology, University of Münster and University Hospital Münster, Albert-Schweitzer-Campus 1, DE-48149 Muenster, Germany.
Background/objectives: In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images.
View Article and Find Full Text PDFRespir Res
January 2025
National Heart and Lung Institute, Imperial College London, London, UK.
Background: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are needed to help predict and quantify ILD.
Methods: We evaluated the potential of an automated ILD quantification system (icolung) from chest CT scans, to help in quantification and prediction of ILD progression in SSc-ILD.
Stat Med
February 2025
Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada.
Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!