Image-based screening has become a mature field over the past decade, largely due to the detailed information that can be obtained about compound mode of action by considering the phenotypic effects of test compounds on cellular morphology. However, very few examples exist of extensions of this approach to bacterial targets. We now report the first high-throughput, high-content platform for the prediction of antibiotic modes of action using image-based screening. This approach employs a unique feature segmentation and extraction protocol to quantify key size and shape metrics of bacterial cells over a range of compound concentrations, and matches the trajectories of these metrics to those of training set compounds of known molecular target to predict the test compound's mode of action. This approach has been used to successfully predict the modes of action of a panel of known antibiotics, and has been extended to the evaluation of natural products libraries for the de novo prediction of compound function directly from primary screening data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674180PMC
http://dx.doi.org/10.1039/c3mb70027eDOI Listing

Publication Analysis

Top Keywords

image-based screening
8
mode action
8
modes action
8
mechanism action-based
4
action-based classification
4
classification antibiotics
4
antibiotics high-content
4
high-content bacterial
4
bacterial image
4
image analysis
4

Similar Publications

Background And Aims: Inadequate bowel preparation which occurs in 25% of colonoscopies is a major barrier to the effectiveness of screening for colorectal cancer. We aim to develop an artificial intelligence (machine learning) algorithm to assess photos of stool output after bowel preparation to predict inadequate bowel preparation before colonoscopy.

Methods: Patients were asked to text a photo of their stool in the commode when they believed that they neared completion of their colonoscopy bowel preparation.

View Article and Find Full Text PDF

Malaria remains a global health concern, with 249 million cases and 608,000 deaths being reported by the WHO in 2022. Traditional diagnostic methods often struggle with inconsistent stain quality, lighting variations, and limited resources in endemic regions, making manual detection time-intensive and error-prone. This study introduces an automated system for analyzing Romanowsky-stained thick blood smears, focusing on image quality evaluation, leukocyte detection, and malaria parasite classification.

View Article and Find Full Text PDF

Background/objectives: In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are needed to help predict and quantify ILD.

Methods: We evaluated the potential of an automated ILD quantification system (icolung) from chest CT scans, to help in quantification and prediction of ILD progression in SSc-ILD.

View Article and Find Full Text PDF

Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!