Carbonic anhydrase (CA) was purified from Micrococcus lylae and Micrococcus luteus with 49.90 and 53.8 % yield, respectively, isolated from calcium carbonate kilns. CA from M. lylae retained 80 % stability in the pH and temperature range of 6.0-8.0 and 35-45 °C, respectively. However, CA from M. luteus was stable in the pH and temperature range of 7.5-10.0 and 35-55 °C, respectively. Cross-linked enzyme aggregates (CLEAs) raised the transition temperature of M. lylae and M. luteus CA up to 67.5 and 74.0 °C, while the operational stability (T(1/20) of CA at 55 °C was calculated to be 7.7 and 12.0 h, respectively. CA from both the strains was found to be monomeric in nature with subunit molecular weight and molecular mass of 29 kDa. Ethoxozolamide was identified as the most potent inhibitor based on both IC(50) values and inhibitory constant measurement (K(i)). The K(m) and V(max) for M. lylae CA (2.31 mM; 769.23 μmol/mg/min) and M. luteus CA (2.0 mM; 1,000 μmol/mg/min) were calculated from Lineweaver-Burk plots in terms of esterase activity. Enhanced thermostability of CLEAs alleviates its role in operational stability for application at an on-site scrubber. The characteristic profile of purified CA from Micrococcus spp. advocates its effective application in biomimetic CO(2) sequestration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0226-y | DOI Listing |
JBJS Essent Surg Tech
May 2024
Radboud University Medical Center, Nijmegen, The Netherlands.
Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou 325035 P. R. China
O3-type NaNiMnO cathode material exhibits significant potential for sodium-ion batteries (SIBs) owing to its high theoretical capacity and ample sodium reservoir. Nonetheless, its practical implementation encounters considerable obstacles, such as impaired structural integrity, sensitivity to moisture, inadequate high-temperature stability, and being unstable under high-voltage conditions. This study investigates the co-substitution of Cu, Mg, and Ti, guided by principles of the periodic law, to enhance the material's stability under varying conditions.
View Article and Find Full Text PDFMediterr J Rheumatol
December 2024
Department of Rheumatology.
Aim: Atlantoaxial dislocation is a loss of stability between the atlas and axis. It is rarely reported in patients with axial spondylarthritis. We present an axial spondylarthritis case revealed by atlantoaxial subluxation.
View Article and Find Full Text PDFIndian J Orthop
February 2025
Department of Orthopaedics, PARAS HMRI Hospital, Patna, Bihar 800014 India.
Introduction: Aseptic nonunion is prevalent in orthopedic practice, causing persistent pain and functional impairment. Humeral shaft fractures, accounting for 3-5% of all fractures, have nonunion rates of 2-33% in nonoperative and 5-10% in surgical management. This study, the largest case series on operative management of aseptic humeral shaft nonunion (AHSN), treated with plate osteosynthesis.
View Article and Find Full Text PDFNat Energy
October 2024
Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
Microscopy provides a proxy for assessing the operation of perovskite solar cells, yet most works in the literature have focused on bare perovskite thin films, missing charge transport and recombination losses present in full devices. Here we demonstrate a multimodal operando microscopy toolkit to measure and spatially correlate nanoscale charge transport losses, recombination losses and chemical composition. By applying this toolkit to the same scan areas of state-of-the-art, alloyed perovskite cells before and after extended operation, we show that devices with the highest macroscopic performance have the lowest initial performance spatial heterogeneity-a crucial link that is missed in conventional microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!