Early-life exposure to methylmercury in wildtype and pdr-1/parkin knockout C. elegans.

Neurochem Res

Division of Pediatric Toxicology, Vanderbilt University Medical Center, 11425 MRB IV, 2215-B Garland Ave., Nashville, TN, 37232-0414, USA.

Published: August 2013

We examined the impact of early-life exposure to methylmercury (MeHg) on Caenorhabditis elegans (C. elegans) pdr-1 mutants, addressing gene-environment interactions. We tested the hypothesis that early-life exposure to MeHg and knockout (KO) of pdr-1 (mammalian: parkin/PARK2) exacerbates MeHg toxicity and damage to the dopaminergic (DAergic) system. pdr-1KO worms showed increased lethality and decreased lifespan following MeHg exposure. Mercury (Hg) content, measured with inductively coupled plasma-mass spectrometry was increased in pdr-1KO worms compared to wildtype (N2) controls. 2'7' dichlorodihydrofluorescein diacetate assay revealed a significant increase in reactive oxygen species in both strains following MeHg exposure; however, while N2 worms showed an increase in skn-1 transcript levels following MeHg exposure, there was no difference in skn-1 induction in pdr-1KO worms. Dopamine-dependent behavioral analysis revealed an effect of MeHg on N2 wildtype worms, but no effect on pdr-1KO worms. Taken together, these results suggest that pdr-1KO worms are more sensitive to MeHg than wildtype worms, but MeHg does not exacerbate behavioral changes related to the absence of pdr-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3692600PMC
http://dx.doi.org/10.1007/s11064-013-1054-8DOI Listing

Publication Analysis

Top Keywords

pdr-1ko worms
20
early-life exposure
12
mehg exposure
12
mehg
9
exposure methylmercury
8
worms
8
mehg wildtype
8
wildtype worms
8
worms pdr-1ko
8
exposure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!