Rhomboids represent an evolutionarily ancient protease family. Unlike most other proteases, they are polytopic membrane proteins and specialize in cleaving transmembrane protein substrates. The polar active site of rhomboid protease is embedded in the membrane and normally closed. For the bacterial rhomboid GlpG, it has been proposed that one of the transmembrane helices (S5) of the protease can rotate to open a lateral gate, enabling substrate to enter the protease from inside the membrane. Here, we studied the conformational change in GlpG by solving the cocrystal structure of the protease with a mechanism-based inhibitor. We also examined the lateral gating model by cross-linking S5 to a neighboring helix (S2). The crystal structure shows that inhibitor binding displaces a capping loop (L5) from the active site but causes only minor shifts in the transmembrane helices. Cross-linking S5 and S2, which not only restricts the lateral movement of S5 but also prevents substrate from passing between the two helices, does not hinder the ability of the protease to cleave a membrane protein substrate in detergent solution and in reconstituted membrane vesicles. Taken together, these data suggest that a large lateral movement of the S5 helix is not required for substrate access to the active site of rhomboid protease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675599 | PMC |
http://dx.doi.org/10.1074/jbc.M112.438127 | DOI Listing |
J Phys Chem Lett
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
Heterogenous single-atom catalysts (SACs) are reminiscent of homogeneous catalysts because of the similarity of structural motif of active sites, showing the potential of using the advantage of homogeneous catalysts to tackle challenges in hetereogenous catalysis. In heterogeneous oxygen electrocatalysis, the homogeneity of adsorption patterns of reaction intermediates leads to scaling relationships that limit their activities. In contrast, homogeneous catalysts can circumvent such limits by selectively altering the adsorption of intermediates through secondary coordination effects (SCEs).
View Article and Find Full Text PDFMol Divers
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.
View Article and Find Full Text PDFRNA Biol
December 2025
Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!