Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645776 | PMC |
http://dx.doi.org/10.1136/bcr-2013-009083 | DOI Listing |
Sci Rep
January 2025
School of Safety Science and Engineering (School of Emergency Management), Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.
View Article and Find Full Text PDFSci Rep
January 2025
LCEA Laboratory, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco.
In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Bio Pesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry Univ, Fuzhou, China.
The interaction of microbial communities with host immunity has become one of the most explored research areas with significant implications for pest control strategies. It has been found that the gut microbiota plays substantial roles in immune response regulation and host-gut microbiome symbiosis, as well as in pathogen resistance and overall fitness in Tephritidae fruit flies that are major pests of agricultural importance. In this review, we discuss the modulation of immune responses of Tephritidae fruit flies by the gut microbiota with particular emphasis on the general interactions between microbiota and the immune system.
View Article and Find Full Text PDFNat Commun
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada. Electronic address:
This study investigated the production and application of lignocellulosic wood vinegar and tar as organic pesticides to combat bacterial canker disease in trees, caused by pathogenic bacteria. Lignocellulosic wood vinegar and tar were produced from various lignocellulosic wastes through pyrolysis at different temperatures, with sawdust at 300 °C, 350 °C, and 400 °C yielding the highest quantity and quality of vinegar. Chemical analysis revealed that the lignocellulosic vinegar contained significant concentrations of acetic acid, methanol, and phenolic compounds, all known for their strong antimicrobial properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!