Intranasal administration is a method of delivering therapeutic agents to the central nervous system (CNS). It is non-invasive and allows large molecules that do not cross the blood-brain barrier access to the CNS. Drugs are directly targeted to the CNS with intranasal delivery, reducing systemic exposure and thus unwanted systemic side effects. Delivery from the nose to the CNS occurs within minutes along both the olfactory and trigeminal neural pathways via an extracellular route and does not require drug to bind to any receptor or axonal transport. Intranasal delivery is a widely publicized method and is currently being used in human clinical trials. Intranasal delivery of drugs in animal models allows for initial evaluation of pharmacokinetic distribution and efficacy. With mice, it is possible to administer drugs to awake (non-anesthetized) animals on a regular basis using a specialized intranasal grip. Awake delivery is beneficial because it allows for long-term chronic dosing without anesthesia, it takes less time than with anesthesia, and can be learned and done by many people so that teams of technicians can dose large numbers of mice in short periods. Efficacy of therapeutics administered intranasally in this way to mice has been demonstrated in a number of studies including insulin in diabetic mouse models and deferoxamine in Alzheimer's mouse models. The intranasal grip for mice can be learned, but is not easy and requires practice, skill, and a precise grip to effectively deliver drug to the brain and avoid drainage to the lung and stomach. Mice are restrained by hand using a modified scruff in the non-dominant hand with the neck held parallel to the floor, while drug is delivered with a pipettor using the dominant hand. It usually takes 3-4 weeks of acclimating to handling before mice can be held with this grip without a stress response. We have prepared this JoVE video to make this intranasal delivery technique more accessible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653240 | PMC |
http://dx.doi.org/10.3791/4440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!