Yarrowia lipolytica short chain dehydrogenase/reductase (YlSDR) was expressed in Escherichia coli, purified and characterized in vitro. The substrate scope for YlSDR mediated oxidation was investigated with alcohols and unprotected carbohydrates spectrophotometrically, revealing a preference for secondary compared to primary alcohols. In reduction direction, YlSDR was highly active on ribulose and fructose, suggesting that the enzyme is a mannitol-2-dehydrogenase. In order to explore substrate tolerance especially for space-demanding, lipophilic protecting groups, 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose were investigated as substrates: YlSDR oxidized 5-O-trityl-D-ribitol and 5-O-trityl-α,β-D-ribose and reduced the latter at the expense of NADP(H).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2013.03.064 | DOI Listing |
Following a request from the European Commission, the European Food Safety Authority was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of canthaxanthin, regarding the addition of a new production route, by the yeast CBS 146148. The additive is already authorised as sensory feed additive for use in feed for chickens for fattening, minor poultry species for fattening, laying poultry, poultry reared for laying, ornamental fish, ornamental birds and ornamental breeder hens. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concludes that canthaxanthin produced with CBS 146148 is considered safe for the target species, the consumer and the environment under the current authorised conditions of use.
View Article and Find Full Text PDFFollowing a request from the European Commission, the EFSA was asked to deliver a scientific opinion on the proposed modification of the terms of the authorisation of the feed additive consisting of a preparation of canthaxanthin (CAROPHYLL® Red 10%), regarding the addition of a new production route, by the yeast CBS 146148 and to modify the additive specifications by substituting ethoxyquin by 4.4% butylated hydroxytoluene (BHT) and increasing the limit for dichloromethane to 80 mg/kg. The additive is already authorised as zootechnical feed additive for breeder hens.
View Article and Find Full Text PDFJ Biol Eng
January 2025
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, South Korea.
Background: β-Carotene is a natural product that has garnered significant commercial interest. Considerable efforts have been made to meet such demand through the metabolic engineering of microorganisms, yet there is still potential for improvement. In this study, engineering approaches including carbon and redox rebalancing were used to maximize β-carotene production in Yarrowia lipolytica.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.
Background: Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!