The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2013.03.053 | DOI Listing |
Sci Rep
January 2025
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.
View Article and Find Full Text PDFNature
January 2025
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada.
Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. Although their origins and emission mechanisms are unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Miky Way Galaxy, with properties suggesting neutron star origins. However, unlike pulsars, FRBs typically show minimal variability in their linear polarization position angle (PA) curves.
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
Null mutations for genes encoding a major seed storage protein in pea, vicilin, were sought through screening a fast-neutron mutant population. Deletion mutations at four or five vicilin loci, where all vicilin genes within each locus were deleted, were combined to address the question of how removal or reduction of a major storage protein and potential allergen might impact the final concentration of protein per unit mature seed weight, seed yield and viability. While the concentration of seed protein was not reduced in mature seeds of mutant lines, indicative of a re-balancing of the proteome, notable differences were apparent in the metabolite, proteomic and amino acid profiles of the seeds, as well as in some functional properties.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4L8, Canada.
We report changes in Young's Modulus and breaking strength in compact costal porcine bone (Yorkshire breed, n = 9) subjected to escalating doses up to 4.0 Gy of fast neutrons, from a Li(p,n)Be reaction. The mean neutron energy was 233 keV.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Commonwealth Fusion Systems, Devens, Massachusetts 01434, USA.
The spectrum of neutrons emitted by thermonuclear plasmas encodes information about the fuel ion distribution function. Measuring these fast neutron spectra with sufficient resolution allows for the measurement of plasma properties such as the ion temperature and strength and energy of fast ion populations. Liquid organic scintillators are a commonly used fast neutron detection technology because of their high detection efficiency and ability to discriminate between neutrons and gammas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!