Repetitive DNA elements are ubiquitous constituents of eukaryotic genomes. The biological roles of these repetitive elements, supposed to impact genome organization and evolution, are not completely elucidated yet. The availability of whole genome sequence offers the opportunity to draw a picture of the genome-wide distribution of these elements and provide insights into potential mechanisms of genome plasticity. The present study uses in silico approaches to describe tandem repeats and transposable elements distribution in the genome of the button mushroom, Agaricus bisporus. Transposable elements comprised 12.43% of the assembled genome, and 66% of them were found clustered in the centromeric or telomeric regions. Methylation of retrotransposon has been demonstrated. A total of 1996 mini-, 4062 micro-, and 37 satellites motifs were identified. The microsatellites appeared widely and evenly spread over the whole genome sequence, whereas the minisatellites were not randomly distributed. Indeed, minisatellites were found to be associated with transposable elements clusters. Telomeres exhibited a specific sequence with a T(n)AG(n) signature. A comparison between the two available genome sequences of A. bisporus was also performed and sheds light on the genetic divergence between the two varieties. Beyond their role in genome structure, repeats provide a virtually endless source of molecular markers useful for genetic studies in this cultivated species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2013.04.003DOI Listing

Publication Analysis

Top Keywords

transposable elements
12
repetitive dna
8
dna elements
8
button mushroom
8
mushroom agaricus
8
agaricus bisporus
8
genome
8
genome sequence
8
elements
7
genome-wide survey
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!