High-resolution electron microscopy is an efficient tool for characterizing heterogeneous nanostructures; however, currently the analysis is a laborious and time-consuming manual process. In order to be able to accurately and robustly quantify heterostructures, one must obtain a statistically high number of micrographs showing images of the appropriate sub-structures. The second step of analysis is usually the application of digital image processing techniques in order to extract meaningful structural descriptors from the acquired images. In this paper it will be shown that by applying on-line image processing and basic machine vision algorithms, it is possible to fully automate the image acquisition step; therefore, the number of acquired images in a given time can be increased drastically without the need for additional human labor. The proposed automation technique works by computing fields of structural descriptors in situ and thus outputs sets of the desired structural descriptors in real-time. The merits of the method are demonstrated by using combustion-generated black carbon samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2013.02.017 | DOI Listing |
Invest Radiol
January 2025
From the Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (A. Schwarz, A. Simon, A.M.); Siemens Healthineers AG, Forchheim, Germany (A. Schwarz, C.H., J.D., A. Simon); Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany (F.K.W., S.G., M.S.); and Institut for Radiology, Pediatric and Neuroradiology, Helios Hospital, Schwerin, Germany (H.-J.R.).
Objective: Respiratory motion can affect image quality and thus affect the diagnostic accuracy of CT images by masking or mimicking relevant lung pathologies. CT examinations are often performed during deep inspiration and breath-hold to achieve optimal image quality. However, this can be challenging for certain patient groups, such as children, the elderly, or sedated patients.
View Article and Find Full Text PDFScience
January 2025
Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.
View Article and Find Full Text PDFPLoS One
January 2025
LP2N, Laboratoire Photonique Numérique et Nanosciences, University Bordeaux, Talence, France.
Recent advances in bioengineering have made it possible to develop increasingly complex biological systems to recapitulate organ functions as closely as possible in vitro. Monitoring the assembly and growth of multi-cellular aggregates, micro-tissues or organoids and extracting quantitative information is a crucial but challenging task required to decipher the underlying morphogenetic mechanisms. We present here an imaging platform designed to be accommodated inside an incubator which provides high-throughput monitoring of cell assemblies over days and weeks.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.
Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!