Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.

Results: The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales.

Conclusions: Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships.

Reviewers: This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655853PMC
http://dx.doi.org/10.1186/1745-6150-8-9DOI Listing

Publication Analysis

Top Keywords

obsidian pool
8
yellowstone national
8
national park
8
multiple split
8
nanoarchaeota
5
genome
5
nst1
5
insights archaeal
4
archaeal evolution
4
evolution symbiosis
4

Similar Publications

Entrofy your cohort: A transparent method for diverse cohort selection.

PLoS One

September 2020

Obsidian Security, Newport Beach, CA, United States of America.

Selecting a cohort from a set of candidates is a common task within and beyond academia. Admitting students, awarding grants, and choosing speakers for a conference are situations where human biases may affect the selection of any particular candidate, and, thereby the composition of the final cohort. In this paper, we propose a new algorithm, entrofy, designed to be part of a human-in-the-loop decision making strategy aimed at making cohort selection as just, transparent, and accountable as possible.

View Article and Find Full Text PDF

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization.

View Article and Find Full Text PDF

Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the conversion of plant biomass into biofuels using heat-tolerant microorganisms from Obsidian Pool in Yellowstone National Park, where both bacterial and archaeal diversity was analyzed through DNA sequencing.
  • - Noteworthy findings include an enriched microbial community of Firmicutes with certain bacteria, such as Clostridium and Caldicellulosiruptor, adapted to decompose biomass at various high temperatures.
  • - Experiments demonstrated microbial activity on different biomass substrates up to 80 °C, revealing that specific bacteria thrive at different temperature ranges, with Caloramator at lower and Caldicellulosiruptor at higher temperatures.
View Article and Find Full Text PDF

Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.

Results: The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!