Decrease of Obesity by Allantoin via Imidazoline I 1 -Receptor Activation in High Fat Diet-Fed Mice.

Evid Based Complement Alternat Med

Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan.

Published: April 2013

The activation of the imidazoline I1-receptor (I1R) is known to regulate appetite. Allantoin, an active ingredient in the yam, has been reported to improve lipid metabolism in high fat diet- (HFD-)fed mice. However, the effect of allantoin on obesity remains unclear. In the present study, we investigated the effects of allantoin on HFD-induced obesity. The chronic administration of allantoin to HFD-fed mice for 8 weeks significantly decreased their body weight, and this effect was reversed by efaroxan at a dose sufficient to block I1R. The epididymal white adipose tissue (eWAT) cell size and weight in HFD-fed mice were also decreased by allantoin via the activation of I1R. In addition, allantoin significantly decreased the energy intake of HFD-fed mice, and this reduction was associated with a decrease in the NPY levels in the brain. However, no inhibitory effect of allantoin on energy intake was observed in db/db mice. Moreover, allantoin lowered HFD-induced hyperleptinemia, and this activity was abolished by I1R blockade with efaroxan. Taken together, these data suggest that allantoin can ameliorate energy intake and eWAT accumulation by activating I1R to improve HFD-induced obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626183PMC
http://dx.doi.org/10.1155/2013/589309DOI Listing

Publication Analysis

Top Keywords

hfd-fed mice
16
energy intake
12
allantoin
10
high fat
8
mice allantoin
8
hfd-induced obesity
8
mice
6
i1r
5
decrease obesity
4
obesity allantoin
4

Similar Publications

Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.

View Article and Find Full Text PDF

Conjugated Linoleic Acid (CLA) Mitigates High-Fat Diet (HFD)-Induced Mammary Gland Development Impairment of Pubertal Mice via Regulating CD36 Palmitoylation and Downstream JNK-ERK Pathway.

J Agric Food Chem

January 2025

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry and State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China.

Conjugated linoleic acid (CLA) is known for antiobesity. However, the role of CLA in regulating high-fat diet (HFD)-impaired pubertal mammary gland development remains undefined. Here, pubertal female mice and HC11 cells were treated with HFD or palmitic acid (PA), supplemented with or without CLA, respectively.

View Article and Find Full Text PDF

Background: The detrimental effects of a high-fat diet (HFD) extend beyond metabolic consequences and include systemic chronic inflammation (SCI), immune dysregulation, and gut health disruption.

Objectives: In this study, we used Mendelian randomization (MR) to investigate the relationship between HFD and gut microbiota, and SCI.

Methods: Genetic variants associated with dietary fat were utilized to explore causal relationships.

View Article and Find Full Text PDF

After 10 weeks of feeding C57BL/6J mice with a normal diet (ND) or a high-fat diet (HFD), a 7-week intervention with milk fat and whole milk was conducted to assess their long-term effects on host blood lipid levels. The results showed that milk fat and whole milk did not significantly elevate low-density lipoprotein cholesterol (LDL-C) in either ND- or HFD-fed mice. In ND mice, milk fat and whole milk improved gut microbiota diversity and Amplicon Sequence Variants.

View Article and Find Full Text PDF

Gut protects against fat deposition by enhancing secondary bile acid biosynthesis.

Imeta

December 2024

Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry College of Animal Science and Technology, Hunan Agricultural University Changsha China.

Gut microbiome is crucial for lipid metabolism in humans and animals. However, how specific gut microbiota and their associated metabolites impact fat deposition remains unclear. In this study, we demonstrated that the colonic microbiome of lean and obese pigs differentially contributes to fat deposition, as evidenced by colonic microbiota transplantation experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!