Globoid cell leukodystrophy (GLD) is a common neurodegenerative lysosomal storage disorder caused by a deficiency in galactocerebrosidase (GALC), an enzyme that cleaves galactocerebroside during myelination. Bone marrow transplantation has shown promise when administered to late-onset GLD patients. However, the side effects (e.g., graft vs. host disease), harsh conditioning regimens (e.g., myelosuppression), and variable therapeutic effects make this an unsuitable option for infantile GLD patients. We previously reported modest improvements in the twitcher mouse model of GLD after intracerebroventricular (ICV) injections of a low-dose of multipotent stromal cells (MSCs). Goals of this study were to improve bone marrow-derived MSC (BMSC) therapy for GLD by increasing the cell dosage and comparing cell type (e.g., transduced vs. native), treatment timing (e.g., single vs. weekly), and administration route (e.g., ICV vs. intraperitoneal [IP]). Neonatal twitcher mice received (a) 2 × 10(5) BMSCs by ICV injection, (b) 1 × 10(6) BMSCs by IP injection, (c) weekly IP injections of 1 × 10(6) BMSCs, or (d) 1 × 10(6) lentiviral-transduced BMSCs overexpressing GALC (GALC-BMSC) by IP injection. All treated mice lived longer than untreated mice. However, the mice receiving peripheral MSC therapy had improved motor function (e.g., hind limb strength and rearing ability), twitching symptoms, and weight compared to both the untreated and ICV-treated mice. Inflammatory cell, globoid cell, and apoptotic cell levels in the sciatic nerves were significantly decreased as a result of the GALC-BMSC or weekly IP injections. The results of this study indicate a promising future for peripheral MSC therapy as a noninvasive, adjunct therapy for patients affected with GLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770764PMC
http://dx.doi.org/10.1002/stem.1397DOI Listing

Publication Analysis

Top Keywords

globoid cell
12
multipotent stromal
8
stromal cells
8
cell leukodystrophy
8
twitcher mouse
8
gld patients
8
106 bmscs
8
weekly injections
8
peripheral msc
8
msc therapy
8

Similar Publications

Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.

View Article and Find Full Text PDF

Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease.

PLoS One

December 2024

Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.

Article Synopsis
  • - Krabbe disease (Kd) is caused by a deficiency in the enzyme GALC, leading to the accumulation of the lipid galactosylceramide (GalCer), which produces a toxic lipid called psychosine that damages myelinating cells and leads to demyelination.
  • - Research using induced pluripotent stem cells (iPSCs) from Kd patients revealed that Kd myelinating organoids exhibit early myelination defects without affecting other cell types, while the microglia in these organoids show changes in response to GalCer feeding.
  • - The findings suggest that while Kd model organoids don't show classic lysosomal dysfunction, they provide an essential platform for studying the mechanisms behind demyel
View Article and Find Full Text PDF

Leukodystrophies represent a heterogeneous group of disorders characterized by specific genetic mutations, metabolic abnormalities, and degeneration of white matter in the central nervous system. These disorders are classified into several categories, with X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) being the most prevalent demyelinating leukodystrophies in pediatric populations. Maintaining proteostasis, which is critical for normal cellular function, relies fundamentally on the ubiquitin-proteasome system (UPS) and autophagy for the degradation of misfolded and damaged proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Krabbe disease is caused by a deficiency in galactocerebrosidase, leading to severe neurodegeneration, particularly in infants, and the study aimed to track the disease's progression and the impact of hematopoietic stem cell transplantation (HSCT).* -
  • The research involved 137 infants with Krabbe disease over 22 years, comparing outcomes between those who underwent HSCT and those who did not, revealing that early symptoms could include irritability and developmental delays, and overall survival rates varied significantly based on treatment.* -
  • Results indicated that while HSCT improved galactocerebrosidase levels and extended lifespan, it couldn't halt the progression of nerve damage, emphasizing the critical need for
View Article and Find Full Text PDF

Hematopoietic stem cell transplantation in leukodystrophies.

Handb Clin Neurol

September 2024

INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France. Electronic address:

More than 50 leukodystrophies have been described. This group of inherited disorders affects myelin development and/or maintenance and can manifest from birth to adulthood. Neuroinflammation is a hallmark of some leukodystrophies, explaining in part the therapeutic benefit of hematopoietic stem cell transplantation (HSCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!