Globoid cell leukodystrophy (GLD) is a common neurodegenerative lysosomal storage disorder caused by a deficiency in galactocerebrosidase (GALC), an enzyme that cleaves galactocerebroside during myelination. Bone marrow transplantation has shown promise when administered to late-onset GLD patients. However, the side effects (e.g., graft vs. host disease), harsh conditioning regimens (e.g., myelosuppression), and variable therapeutic effects make this an unsuitable option for infantile GLD patients. We previously reported modest improvements in the twitcher mouse model of GLD after intracerebroventricular (ICV) injections of a low-dose of multipotent stromal cells (MSCs). Goals of this study were to improve bone marrow-derived MSC (BMSC) therapy for GLD by increasing the cell dosage and comparing cell type (e.g., transduced vs. native), treatment timing (e.g., single vs. weekly), and administration route (e.g., ICV vs. intraperitoneal [IP]). Neonatal twitcher mice received (a) 2 × 10(5) BMSCs by ICV injection, (b) 1 × 10(6) BMSCs by IP injection, (c) weekly IP injections of 1 × 10(6) BMSCs, or (d) 1 × 10(6) lentiviral-transduced BMSCs overexpressing GALC (GALC-BMSC) by IP injection. All treated mice lived longer than untreated mice. However, the mice receiving peripheral MSC therapy had improved motor function (e.g., hind limb strength and rearing ability), twitching symptoms, and weight compared to both the untreated and ICV-treated mice. Inflammatory cell, globoid cell, and apoptotic cell levels in the sciatic nerves were significantly decreased as a result of the GALC-BMSC or weekly IP injections. The results of this study indicate a promising future for peripheral MSC therapy as a noninvasive, adjunct therapy for patients affected with GLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770764 | PMC |
http://dx.doi.org/10.1002/stem.1397 | DOI Listing |
Stem Cell Res Ther
December 2024
Department of Pathology, Qingdao Municipal Hospital Group, 1 Jiaozhou Road, Qingdao, 266011, Shandong, China.
Background: The challenge of expanding haematopoietic stem/progenitor cells (HSPCs) in vitro has limited their clinical application. Human hair follicle mesenchymal stem cells (hHFMSCs) can be reprogrammed to generate intermediate stem cells by transducing OCT4 (hHFMSCs) and pre-inducing with FLT3LG/SCF, and differentiated into erythrocytes. These intermediate cells exhibit gene expression patterns similar to pre-HSCs, making them promising for artificial haematopoiesis.
View Article and Find Full Text PDFPLoS One
December 2024
Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America.
Cells
November 2024
Department of Neurology, MacKay Children's Hospital, Taipei 10449, Taiwan.
Leukodystrophies represent a heterogeneous group of disorders characterized by specific genetic mutations, metabolic abnormalities, and degeneration of white matter in the central nervous system. These disorders are classified into several categories, with X-linked adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), and globoid cell leukodystrophy (GLD) being the most prevalent demyelinating leukodystrophies in pediatric populations. Maintaining proteostasis, which is critical for normal cellular function, relies fundamentally on the ubiquitin-proteasome system (UPS) and autophagy for the degradation of misfolded and damaged proteins.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2024
Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Handb Clin Neurol
September 2024
INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France. Electronic address:
More than 50 leukodystrophies have been described. This group of inherited disorders affects myelin development and/or maintenance and can manifest from birth to adulthood. Neuroinflammation is a hallmark of some leukodystrophies, explaining in part the therapeutic benefit of hematopoietic stem cell transplantation (HSCT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!