Assessment of mycoflora and infestation of insects, vector of Aspergillus section Flavi, in stored peanut from Argentina.

Mycotoxin Res

Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 km 601 (X5806JRA), Río Cuarto, Córdoba, Argentina.

Published: February 2011

The occurrence of spoilage fungi and Aspergillus section Flavi populations, the aflatoxins incidence, the role of insects as vectors of mycotoxin-producing fungi and the AFs-producing ability of the isolated species throughout the peanut (Arachis hypogaea L.) storage period were evaluated. Analyses of fungal populations from 95 peanut seed samples did not demonstrate significant differences between the incidences in each sampling period. Aspergillus section Flavi were isolated during all incubation periods. Cryptolestes spp. (Coleoptera: Cucujidae) were collected in August, September and October with 18, 16 and 28% of peanut samples contaminated, respectively. Insects isolated during August showed 69% of Aspergillus section Flavi contamination. A. flavus was the most frequently isolated (79%) from peanut seeds and from insect (59%). The greater levels of AFB1 were detected in September and October with a mean of 68.86 μg/kg and 69.12 μg/kg respectively. The highest proportion of A. flavus toxigenic strains (87.5%) was obtained in June. The presence of Aspergillus section Flavi and insect vectors of aflatoxigenic fungi presented a potential risk for aflatoxin production during the peanut storage period. Integrated management of fungi and insect vectors is in progress.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12550-010-0069-0DOI Listing

Publication Analysis

Top Keywords

aspergillus flavi
20
storage period
8
september october
8
insect vectors
8
peanut
6
aspergillus
5
flavi
5
assessment mycoflora
4
mycoflora infestation
4
infestation insects
4

Similar Publications

A silent killer in the word: Review on Aspergillus flavus strains.

Toxicon

January 2025

Laboratory of Biochemistry and Molecular Biology of Centre Béninois de La Recherche Scientifique et de L'Innovation (CBRSI) 03BP2262 Cotonou, Benin; National Agricultural University, Porto-Novo, Benin. Electronic address:

Filamentous fungi are recognized for their significance in food processing and antibiotic production, as well as their capacity to produce mycotoxins. Numerous secondary metabolites have been investigated, and their occurrence in foodstuffs, both in the field and during the storage of agricultural products, poses a substantial health risk to consumers. Several fungal species capable of producing mycotoxins have been documented.

View Article and Find Full Text PDF
Article Synopsis
  • - Aspergillus species are known for producing polyketides that lead to aflatoxins, which are harmful mycotoxins found in grains, seeds, and nuts, affecting both the agricultural field and storage processes.
  • - The key aflatoxin-producing species include A. flavus, A. parasiticus, and A. nomius, along with others, and their toxin production is influenced by specific genes, particularly the aflR gene, though its presence doesn't guarantee toxin production.
  • - Evolutionary studies show that some non-aflatoxigenic species may have derived from aflatoxin-producing ancestors, and genetic analyses reveal differences in gene clusters responsible for aflatoxin production between species.
View Article and Find Full Text PDF

Apples and apple-derived products can be contaminated with patulin and, to a lesser extent, aflatoxin B1 and fumonisins. Fruits were collected from Golden Delicious and Imperatore trees in three orchards in Veneto, Northern Italy, and analysed for the presence of fungi and mycotoxins. Sampling and analyses were also carried out from storage bins to final puree tanks along the apple-puree production chain.

View Article and Find Full Text PDF
Article Synopsis
  • * A research study involved 468 groundnut and 558 maize farmers testing biocontrol products that use harmless fungi strains to combat aflatoxins, showing impressive results over two years.
  • * Treated crops showed aflatoxin levels well within safe limits set by the EU and US, with reductions of 78-98% in groundnuts and 61-93% in maize, indicating the products' effectiveness in improving crop safety and quality.
View Article and Find Full Text PDF

Background: Aflatoxin contamination by section Flavi fungi poses a significant threat to food security and public health in sub-Saharan Africa (SSA). Maize, groundnut, and sorghum are staple crops frequently contaminated with aflatoxins, sometimes at dangerous levels. Despite its detrimental effects, many farmers in SSA lack access to effective tools for mitigating aflatoxin contamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!