Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Cell therapies are hampered by the difficulty of delivering cells to and retaining them in target tissues long enough to repair or regenerate local tissues.
Hypothesis: Magnetic-assisted delivery of magnetically labeled mesenchymal stem cells (m-MSCs) would be rapid, allowing for chondrogenic differentiation and functional joint repair without replacement.
Study Design: Controlled laboratory study.
Methods: Sixteen mini-pigs aged 6 to 7 months were used. A full-thickness cartilage defect was created in the center of the patella with a cylindrical punch (diameter, 6 mm). At 4 weeks after creation of the cartilage defects, the animals were divided into 3 treatment groups: In the M group, m-MSCs (5 × 10(6) cells) were injected and accumulated to the cartilage defect using an external magnetic force (1.5 T) for 10 minutes; in the G group, the patella was faced upward, filled with MSCs (5 × 10(6) cells), and held for 10 minutes; and in the C group, only phosphate-buffered saline was injected. The regenerated cartilage was evaluated in 5 knees in each of the 3 groups by arthroscopic surgery at 6 and 12 weeks and histological and ultrasound evaluation at 12 and 24 weeks.
Results: The mean arthroscopic scores at 6 weeks were 10.4 ± 1.10 in the M group, 8.8 ± 0.84 in the G group, and 7.4 ± 0.89 in the C group. There was a statistically significant difference between the M group and the other 2 groups. The mean arthroscopic scores at 12 weeks were 12.8 ± 1.30 (M group), 10.5 ± 1.30 (G group), and 9.5 ± 0.58 (C group), with a statistically significant difference between the M and C groups. The mean histological scores using the Wakitani scoring system at 12 weeks were 2.8 ± 0.96 (M group), 5.4 ± 0.55 (G group), and 6.0 ± 2.20 (C group), and the mean histological scores at 24 weeks were 2.4 ± 1.50 (M group), 3.5 ± 0.56 (G group), and 5.3 ± 1.50 (C group). The mean histological scores at 12 weeks were significantly better in the M group than in the other groups, and the M group maintained a significantly better histological score than did the C group at 24 weeks.
Conclusion: The m-MSCs had no adverse effect on chondrogenic differentiation, and m-MSCs delivered by magnetic field application repaired cartilage defects.
Clinical Relevance: The clinical application of this novel stem cell delivery system is a potential therapeutic option for treating cartilage defects and may be more applicable throughout the body than traditional methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546513483270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!