The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration.

Neurotox Res

Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changlexi Road, Xi'an, 710032, China.

Published: November 2013

The etiological role of dysregulated autophagy in neurodegenerative diseases has been a subject of intense investigation. While manganese (Mn) is known to cause dopaminergic (DAergic) neurodegeneration, it has yet to be determined whether the dysregulation of autophagy plays a role in Mn-induced neuronal injury. In this study, we investigated the effect of Mn on autophagy in a rat model of manganism, a neurodegenerative disease associated with excessive exposure to Mn. After a single intrastriatal injection of Mn, the short- (4-12 h) and long-term (1-28 days) effect of Mn on DAergic neurons and autophagy were examined. Marked reduction in the number of TH-immunoreactive neurons in the substantia nigra pars compacta (SNpc) as well as TH protein expression, and a significant increase of apomorphine-induced rotations were observed in rats after Mn injection. Manganese also induced the down-regulation of dopamine levels and D1 dopamine receptor expression. In addition, autophagy was dysregulated and inhibited, as evidenced by increased number of abnormal lysosomes, decreased protein expression of Beclin1, and decreased ratio of microtubule-associated protein 1 light chain 3 (LC3) II over LC3 I, concomitant with activated mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70s6k) signaling. In contrast, in the early phase of Mn exposure, the level of autophagy was not be suppressed but compensatorily activated. Although the morphology of the DAergic neuron was intact in the early phase, Mn caused a significant decrease in TH-immunoreactivity and a significant increase in apomorphine-induced rotations in the presence of wortmannin, an inhibitor of autophagy. Taken together, these results demonstrate, for the first time, that autophagy may play a protective role against Mn-induced neuronal damage, whilst dysregulation of autophagy at later phases may mediate DAergic neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785712PMC
http://dx.doi.org/10.1007/s12640-013-9392-5DOI Listing

Publication Analysis

Top Keywords

autophagy
9
daergic neurodegeneration
8
dysregulation autophagy
8
role mn-induced
8
mn-induced neuronal
8
protein expression
8
increase apomorphine-induced
8
apomorphine-induced rotations
8
early phase
8
role
4

Similar Publications

Neuron-derived clone 77 (Nur77), a member of the orphan nuclear receptor family, is expressed and activated rapidly in response to diverse physiological and pathological stimuli. It exerts complex biological functions, including roles in the nervous system, genome integrity, cell differentiation, homeostasis, oxidative stress, autophagy, aging, and infection. Recent studies suggest that Nur77 agonists alleviate symptoms of neurodegenerative diseases, highlighting its potential as a therapeutic target in such conditions.

View Article and Find Full Text PDF

Injectable Nanocomposite Hydrogels for Intervertebral Disc Degeneration: Combating Oxidative Stress, Mitochondrial Dysfunction, and Ferroptosis.

Adv Healthc Mater

March 2025

Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.

Intervertebral disc degeneration (IVDD) is a major cause of low back pain, where oxidative stress and mitochondrial dysfunction are key contributors. Additionally, ferroptosis, an iron-dependent form of cell death, is identified as a critical mechanism in IVDD pathogenesis. Herein, the therapeutic potential of gallic acid (GA)-derived PGA-Cu nanoparticles, enhanced with functional octapeptide (Cys-Lys-His-Gly-d-Arg-d-Tyr-Lys-Phe, SS08) to build the mitochondria-targeted nanoparticles (PGA-Cu@SS08), and embedded within a hydrogel matrix to form a nanocomposite hydrogel, is explored.

View Article and Find Full Text PDF

TRP channels and breast cancer: the role of TRPs in the pathophysiological development.

Front Mol Biosci

February 2025

Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou University, Huzhou, China.

TRP channels play important roles in regulating various physiological and pathological processes, including the progression of cancer. Several TRP channels mediate tumour development. This review focuses on the role of TRP channels in the development of breast cancer, including their involvement in proliferation, apoptosis, autophagy, metastasis, and angiogenesis.

View Article and Find Full Text PDF

Background: The severe functional impairment and poor prognosis of early-onset schizophrenia (EOS) create a great need to identify effective biomarkers for early diagnosis in young psychiatric patients. Current research indicates a potential link between loss of autophagy function and emotional and behavioral abnormalities in individuals with psychiatric disorders.

Materials And Methods: This study aimed to explore diagnostic autophagy-related endogenous competitive RNA (ceRNA) networks for EOS patients.

View Article and Find Full Text PDF

Prostate cancer, the second most common cancer in men, often progresses to castration-resistant prostate cancer despite androgen deprivation therapy. Immunotherapy, revolutionary in cancer treatment, has limited efficacy in prostate cancer due to its "cold tumor" nature. Peptides, with unique advantages, offer new hope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!