The study of airborne biological particles ('bioaerosols') has gained interest in recent years, due to an increasing amount of evidence suggesting that this fraction of airborne particulate matter may play a critical role in the negative effects of aerosols on biological systems. Pioneer investigations demonstrated that bacteria do exist in the atmosphere and can be metabolically active, although studies have not proved whether they actually form ecological communities or are merely assemblages of organisms passively transported from different sources. For a long time, cultivation-based methods have been the gold standard to describe and quantify airborne microorganisms. However, the use of culture-independent techniques and, more recently, of the next-generation sequencing-based methods, has improved the ability of the scientific community to investigate bioaerosols in detail and to address further research questions, such as the temporal and spatial variability of airborne bacterial assemblages, the environmental factors affecting this variability and the potential sources of atmospheric bacteria. This paper provides a systematic review of the state-of-the-art methodologies used in the study of airborne bacteria to achieve each of the aforementioned research objectives, as well as the main results obtained so far. Critical evaluations of the current state of the knowledge and suggestions for further researches are provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-013-4901-2 | DOI Listing |
Environ Pollut
January 2025
Department of Public Health, China Medical University, Taichung City, Taiwan. Electronic address:
Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.
View Article and Find Full Text PDFChemosphere
January 2025
College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore. Electronic address:
Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.
View Article and Find Full Text PDFJ Environ Manage
January 2025
University of Latvia, The Faculty of Science and Technology, Jelgava Street 1, LV-1004 Riga, Latvia.
Forestry activities, i.e., drainage system maintenance or regeneration fellings may alter the water quality in catchments as well as in runoff and induce risks of acidification.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM and PM, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM.
View Article and Find Full Text PDFMed Res Arch
October 2024
Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
Alzheimer's disease and related dementias are a leading cause of morbidity in our aging populations. Although influenced by genetic factors, fewer than 5% of Alzheimer's disease and related dementia cases are due solely to genetic causes. There is growing scientific consensus that these dementias arise from complex gene by environment interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!