The magnetoelectric properties of the TbMn(1-x)Sc(x)O3 series have been studied at low temperatures by means of heat capacity, magnetic measurements and impedance spectroscopy. TbMnO3 exhibits as expected three transitions upon lowering the temperature corresponding to the magnetic ordering of the two sublattices (Mn and Tb) and the ferroelectric transition. Ferroelectricity disappears with Sc dilution for x > 0.1 because the non-collinear magnetic arrangement is destroyed. The dilution of Mn with a non-magnetic ion is also detrimental to the magnetic ordering of both Mn and Tb sublattices. The system evolves to a magnetic glassy state for the intermediate compositions. Formal TbScO3 shows Sc-deficiency and long range magnetic ordering of Tb(3+) moments in the ab-plane brought by the direct interaction between Tb(3+) ions. This ordering is different from the one found in TbMnO3 due to the lack of magnetic coupling between Tb- and Mn-sublattices. A small substitution of Sc by Mn in TbScO3 destroys the Tb ordering giving rise to a magnetic glass behaviour. This effect is ascribed to the partial polarization of Tb sublattice by the paramagnetic Mn which competes with the direct Tb-Tb exchange.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/25/19/195601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!