AI Article Synopsis

  • The study investigates the binding motifs of CTLA-4 in humans (MYPPPY) and pigs (LYPPPY), focusing on the critical role of the methionine (M) vs. leucine (L) amino acids in binding to CD80.
  • Mutations in both porcine and human CTLA-4 were made to analyze their binding affinity to CD80+ cells, revealing that the porcine L is essential for interacting with porcine CD80, while the human M is crucial for binding to human CD80.
  • Results suggest that human CTLA-4-based drugs can be tested in porcine models, while porcine CTLA-4 drugs are limited to swine applications, which may provide insights for xeno

Article Abstract

The binding motif of human CTLA-4 is well known to be MYPPPY and for porcine CTLA-4 the binding motif is LYPPPY. Is this single amino acid difference of methionine (M) versus leucine (L) critical for the CTLA-4 binding? Recently, we have reported that the recombinant soluble porcine CTLA-4 was incapable of binding to human CD80. In this study we mutated L to M in the binding motif of the soluble porcine CTLA-4 and mutated M to L in the binding motif of the soluble human CTLA-4. We then analyzed how these mutations affected the binding affinity of the mutants to both porcine and human CD80(+) cells. The soluble porcine CTLA-4-L97M mutant partially lost its binding affinity to porcine CD80 compared to the wild-type and conferred very weak binding ability to human CD80. These results indicate that the L in the binding motif of porcine CTLA-4 is important for determining its binding ability to porcine CD80. Wild-type soluble human CTLA-4 binds to both human and porcine CD80 with comparable affinity, however, the soluble human CTLA-4-M97L mutant almost lost its binding ability to human CD80 and increased its binding ability to porcine CD80. These results indicate that M in the human CTLA-4 binding motif is extremely critical for its binding to human CD80. Those data suggest that the human CTLA-4 based recombinant protein drugs such as human CTLA-4-Ig can be used and/or tested in a porcine model. Conversely, the use of porcine CTLA-4 based recombinant protein drugs such as porcine CTLA-4-Ig is restricted to swine models. The difference in binding specificity of CTLA-4 observed in this study may be useful for studies such as pig to nonhuman primate xeno-transplantation. Porcine CTLA-4- and human CTLA-4-M97L mutant-based recombinant protein drugs can be used to specifically block the direct presentation by donor antigen presenting cells in pig to nonhuman primate xeno-transplantation. Human CTLA-4-M97L mutant-based recombinant protein drugs will be more ideal as it is without immunogenicity to human being.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721328PMC
http://dx.doi.org/10.1016/j.humimm.2013.04.002DOI Listing

Publication Analysis

Top Keywords

porcine ctla-4
24
binding motif
24
human ctla-4
20
human
17
human cd80
16
porcine cd80
16
binding ability
16
recombinant protein
16
protein drugs
16
porcine
15

Similar Publications

Considering the similarities between swine and humans, it is a logical consequence to use swine as a translational model in research and drug development, including non-clinical safety. Here, we compared the reactivity of peripheral blood mononuclear cells (PBMCs) from humans and minipigs under the influence of different compounds . We conducted a flow cytometry-based proliferation assay that focused on the T-cell response to three different stimuli: concanavalin A (ConA), phytohemagglutinin-L (PHA-L), and staphylococcal Enterotoxin B (SEB).

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2) are economically important pathogens in swine, and pigs with dual infections of PCV2 and PRRSV consistently have more severe clinical symptoms and interstitial pneumonia. However, the synergistic pathogenesis mechanism induced by PRRSV and PCV2 co-infection has not yet been illuminated. Therefore, the aim of this study was to characterize the kinetic changes of immune regulatory molecules, inflammatory factors and immune checkpoint molecules in porcine alveolar macrophages (PAMs) in individuals infected or co-infected with PRRSV and/or PCV2.

View Article and Find Full Text PDF

CD27-Expressing Xenoantigen-Expanded Human Regulatory T Cells Are Efficient in Suppressing Xenogeneic Immune Response.

Cell Transplant

January 2023

The Institute for Cell Transplantation and Gene Therapy, The Third XiangYa Hospital, Central South University, Changsha, China.

Clinically, xenotransplantation often leads to T-cell-mediated graft rejection. Immunosuppressive agents including polyclonal regulatory T cells (poly-Tregs) promote global immunosuppression, resulting in serious infections and malignancies in patients. Xenoantigen-expanded Tregs (xeno-Tregs) have become a promising immune therapy strategy to protect xenografts with fewer side effects.

View Article and Find Full Text PDF

Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs.

View Article and Find Full Text PDF

T cell inhibitory receptors can regulate the proliferation or function of T cells by binding to their ligands and present a unique opportunity to manage destructive immune responses during porcine islet xenotransplantation. We applied ex vivo porcine islet xenotransplantation and in vitro mixed lymphocyte-islet reaction models to assess immune checkpoint receptor expression profiles in recipient T cells, investigated whether CTLA4 or VISTA immunoglobulin (Ig) combination therapy alone could suppress porcine islet xenograft rejection and further analyzed its potential immune tolerance mechanism. Recipient T cells expressed moderate to high levels of CTLA4, PD-1, TIGIT and VISTA, and the frequency of CTLA4 CD4 , TIGIT CD4 , VISTA CD4 and VISTA CD8 T cells was positively correlated with porcine islet xenograft survival time in xenotransplant recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!