In the field of nanomedicine, selective delivery to cancer cells is a common goal, where active targeting strategies are often employed to increase tumor accumulation. In this study, tumor hyperthermia was utilized as a means to increase the active delivery of heat shock protein (HSP) targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates. Following hyperthermia, induced expression of cell surface heat shock protein (HSP) glucose regulated protein 78 kDa (GRP78) was utilized for targeted drug therapy. Conjugates bearing the anticancer agents aminohexylgeldanamycin (AHGDM), docetaxel (DOC), or cisplatin and the GRP78 targeting peptide WDLAWMFRLPVG were synthesized and characterized. Binding to cell surface expressed heat shock protein GRP78 on the surface of human prostate cancer DU145 cells was evaluated. HSP targeted AHGDM and DOC conjugates demonstrated active binding comparable to native targeting peptide. They were then assessed in vitro for the ability to synergistically induce cytotoxicity in combination with moderate hyperthermia (43 °C, 30 min). HSP targeted DOC conjugates exhibited high potency against DU145 cells with an IC₅₀ of 2.4 nM. HSP targeted AHGDM and DOC conjugates demonstrated synergistic effects in combination with hyperthermia with combination index values of 0.65 and 0.45 respectively. Based on these results, HSP targeted DOC conjugates were selected for in vivo evaluation. In DU145 tumor bearing mice, a single treatment of tumor hyperthermia, induced via gold nanorod mediated plasmonic photothermal therapy, and intravenous administration of HSP targeted HPMA copolymer-docetaxel at 10mg/kg resulted in maintained tumor regression for a period of 30 days. These results demonstrate the potential for tumor hyperthermia to increase the delivery of HSP targeted macromolecular chemotherapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860371 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2013.04.006 | DOI Listing |
Vet Parasitol Reg Stud Reports
January 2025
São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, Brazil. Electronic address:
Capybaras (Hydrochoerus hydrochaeris) are hosts for several parasites of public health importance, including Cryptosporidium spp. Therefore, this study aimed to perform the molecular characterization of Cryptosporidium spp. in fecal samples from capybaras inhabiting urban areas.
View Article and Find Full Text PDFBlood
January 2025
Hospital Santa Creu i Sant Pau, Barcelona, Spain.
CD30-directed CART cell therapy (CART30) has limited efficacy in relapsed or refractory patients with CD30+ lymphoma, with a low proportion of durable responses. We have developed an academic CART30 cell product (HSP-CAR30) by combining strategies to improve performance. HSP-CAR30 targets a proximal epitope within the non-soluble part of CD30, and the manufacturing process includes a modulation of ex vivo T cell activation, as well as the addition of interleukin-21 to IL-7 and IL-15 to promote stemness of T cells.
View Article and Find Full Text PDFDiabetes
January 2025
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy.
: In the world, approximately 1% of the population suffers from chronic spontaneous urticaria (CSU), burdening patients' quality of life and challenging clinicians in terms of treatment. Recent scientific evidence has unveiled the potential role of a family of molecules known as "alarmins" in the pathogenesis of CSU. : Papers focusing on the potential pathogenetic role of alarmins in CSU with diagnostic (as biomarkers) and therapeutic implications, in English and published in PubMed, Scopus, Web of Science, as well as clinical studies registered in ClinicalTrials.
View Article and Find Full Text PDFDrug Discov Today
January 2025
Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Pharmaceutical Sciences, Hunan Normal University, Changsha 410013, Hunan, China. Electronic address:
The heat shock protein (HSP) 110 family has a key role as a unique class of molecular chaperones maintaining cellular proteostasis in eukaryotes. Abnormal activation of Hsp110 has been implicated in several diseases. Given its important role in pathogenesis, Hsp110 has become a novel drug target for disease diagnosis and targeted therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!