Novel insights into the pleiotropic effects of human serum albumin in health and disease.

Biochim Biophys Acta

Department of Native Hawaiian Health, University of Hawaii, Honolulu 96813, USA. Electronic address:

Published: December 2013

AI Article Synopsis

  • Human serum albumin (HSA) is a key protein in human blood that not only regulates pressure and transports various substances but also plays a vital role in several physiological functions, including potential catalytic activities.
  • Studies on HSA and its mutations have revealed insights into its diverse roles, particularly in thyroxine transport and interactions with various ligands like warfarin and bilirubin.
  • The renewed interest in HSA's structural and functional details could enhance our understanding of protein-drug interactions, contributing to the development of better drugs and improved healthcare outcomes.

Article Abstract

Background: Human serum albumin is the principal protein in human serum. It participates in regulation of plasma oncotic pressure and transports endogenous and exogenous ligands such as thyroxine, free fatty acids, bilirubin, and various drugs. Therefore, studying its ligand binding mechanism is important in understanding many functions of the protein.

Scope Of Review: This review discusses the pleiotropic biochemical effects and their relevance to physiologic functions of albumin.

Major Conclusions: Although HSA is traditionally recognized for its ligand transport and oncotic effects in human circulation, our studies have revealed its participation in several other important physiological functions. In some instances, it may function as a catalyst. Pleiotropic properties of HSA have been exploited by development of recombinant HSA and its mutants, and the use of these recombinant proteins in studies with various biochemical and biophysical techniques. These studies allowed us to obtain new insights on the diverse roles of HSA in human physiology. The following aspects of HSA were discussed in this review: 1) HSA and its mutants' role in thyroxine transport, 2) structural details of the ligand binding functions of HSA to ligands such as warfarin, digoxin, halothane anesthetics, nitric oxide, bilirubin, free fatty acids, etc, and 3) the formation of modified albumin during myocardial ischemia, its diagnostic significance, and HSA's role in cardiovascular disease.

General Significance: The appreciation and understanding of structural details and new physiological roles has provided a renewed interest in HSA research. Specific structural information gained on various mechanisms of HSA-ligand interaction can be used to develop a model to better understand protein-drug interactions, aid in the development of new drugs with improved pharmacokinetic effects, and ultimately be used to improve the quality of healthcare. This article is part of a Special Issue entitled Serum Albumin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2013.04.012DOI Listing

Publication Analysis

Top Keywords

human serum
12
serum albumin
12
effects human
8
free fatty
8
fatty acids
8
ligand binding
8
hsa
8
structural details
8
human
5
novel insights
4

Similar Publications

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.

View Article and Find Full Text PDF

Background: One of the most common secondary glomerular diseases in children is IgA vasculitis-associated nephritis (IgAVN). Determining the best treatment for IgAVN based on current guidelines is controversial. The purpose of this study was to evaluate the efficacy of methylprednisolone pulse therapy in Chinese children with moderate and severe IgAVN.

View Article and Find Full Text PDF

Discovery of cyanidin-3-O-galactoside as a novel CNT2 inhibitor for the treatment of hyperuricemia.

Bioorg Chem

December 2024

Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. Electronic address:

Inhibition of human concentrative nucleoside transporter 2 (CNT2) could suppress increases in serum urate levels derived from dietary purines. However, the structural basis for substrate recognition of CNT2 is still unknown and only a few inhibitors have been reported. In this study, a homology model of CNT2 was constructed and residues T315, E316, N426, N491, E492, F536 and N538 were identified as binding sites for adenosine through site-directed mutagenesis and a H-adenosine uptake assay.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!