Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2012.12.015 | DOI Listing |
J Vasc Access
January 2025
Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA, USA.
Background: Although conventional pre-operative venography can accurately delineate venous anatomy as an alternative to ultrasound for hemodialysis access planning, it may carry a risk of contrast-induced acute kidney injury (AKI) and progression of renal failure in chronic kidney disease (CKD) patients not yet on dialysis. Therefore, the objective of this study was to evaluate the safety and efficacy of pre-operative venograms in pre-end-stage kidney disease (ESKD) patients.
Methods: We performed a retrospective cohort study (2018-2022) of consecutive pre-ESKD patients who underwent staged bilateral venograms for preoperative vein mapping prior to hemodialysis access creation at a tertiary care medical center.
Materials (Basel)
January 2025
Department of Integrated Design and Tribology Systems, Faculty of Mechanics and Technology, Rzeszów University of Technology, ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland.
In addition to the traditional uses of plywood, such as furniture and construction, it is also widely used in areas that benefit from its special combination of strength and lightness, particularly as a construction material for the production of finishing elements of campervans and yachts. In light of the current need to reduce emissions of climate-damaging gases such as CO, the use of lightweight construction materials is very important. In recent years, hybrid structures made of carbon fibre-reinforced plastics (CFRPs) and metals have attracted much attention in many industries.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Mechanical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt.
Composite materials play a crucial role in various industries, including aerospace, automotive, and shipbuilding. These materials differ from traditional metals due to their high specific strength and low weight, which reduce energy consumption in these industries. The damage behavior of such materials, especially when subjected to stress discontinuities such as central holes, differs significantly from materials without holes.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Materials, Environment, Sapienza University of Rome, 00184 Rome, Italy.
Cleavable bio-based epoxy resin systems are emerging, eco-friendly, and promising alternatives to the common thermoset ones, providing quite comparable thermo-mechanical properties while enabling a circular and green end-of-life scenario of the composite materials. In addition to being designed to incorporate a bio-based resin greener than the conventional fully fossil-based epoxies, these formulations involve cleaving hardeners that enable, under mild thermo-chemical conditions, the total recycling of the composite material through the recovery of the fiber and matrix as a thermoplastic. This research addressed the characterization, processability, and recyclability of a new commercial cleavable bio-resin formulation (designed by the R-Concept company) that can be used in the fabrication of fully recyclable polymer composites.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Inner Mongolia Aerospace Honggang Machinery Co., Ltd., Hohhot 010070, China.
The emerging thermoplastic composite material PEKK exhibits superior thermal stability compared to PEEK. In this work, CF/PEKK laminates were fabricated using laser-assisted heating in AFP, and the effects of repass treatment on the mechanical properties and microstructure of the laminates were compared. The results show that after a single repass treatment, the tensile strength of the laminates increased by 28.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!