Aim: This study aimed to evaluate whether hyperglycemia mediated increased formation of advanced glycation end products (AGEs) was associated with erythrocyte antioxidant enzyme activity in subjects with different stages of diabetic retinopathy (DR).

Methods: Serum level of AGEs was determined by enzyme linked immunosorbent assay. Erythrocyte superoxide dismutase (SOD), glutathione reductase (GR) and catalase activity were estimated by enzymatic reaction based spectrophotometric assay in patients with type 2 diabetes with proliferative diabetic retinopathy (PDR), non-proliferative diabetic retinopathy (NPDR) and no retinopathy (DNR) and also in healthy non-diabetic controls (HC).

Result: Erythrocyte SOD and GR activity was significantly lower among NPDR (p=0.024, 0.0017, respectively) and PDR (p=0.0003, 0.0001, respectively) subjects compared with DNR individuals. A significant inverse correlation was observed between serum AGEs and erythrocyte SOD or GR activity in DNR (p=0.0019; r=-0.3033, p=0.0021; r=-0.3015, respectively), NPDR (p=0.0001; r=-0.4602, p=0.0003; r=-0.4161, respectively), and PDR (p<0.0001; r=-0.6753, p<0.0001; r=-0.5854, respectively) individuals.

Conclusion: Poor glycemia may be the key factor enhancing AGE formation, which may be associated with lower erythrocyte SOD and GR activity along with increased catalase activity in DR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabres.2013.03.031DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
16
hyperglycemia mediated
8
mediated increased
8
advanced glycation
8
erythrocyte antioxidant
8
antioxidant enzyme
8
enzyme activity
8
stages diabetic
8
erythrocyte sod
8
sod activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!