Caffeine (CAF) and other methylxanthines (MTX) may interact directly with several aromatic, intercalating ligands through mixed stacking aggregation. Formation of such stacking hetero-complexes may decrease their free form concentration and, in consequence, diminish their biological activity, which is often related to their direct interaction with DNA. In this paper interactions of acridine mutagen (ICR191) with DNA in the presence of three MTX: caffeine (CAF), pentoxifylline (PTX) and theophylline (TH) are investigated. Several mathematical models are used to calculate all association constant values and every component concentration in each analyzed mixture. Model McGhee-von Hippel is used to analyze ligand-DNA interaction, and model Zdunek et al.--to analyze ligand-MTX interactions. Finally, two distinct mathematical models are employed to analyze three-component mixture containing ligand, MTX and DNA molecules. The first model describes possible interactions of ligand with DNA and MTX, and rejects direct MTX interactions with DNA. The second model describes all interactions mentioned above and, additionally, allows MTX to interact directly with DNA. Results obtained using these models are similar. However, correspondence of theoretical results to experimental data is better for the first model than the second one. In this paper possible interactions of ICR191 with eukaryotic cell chromatin are also analyzed, showing that CAF reduces acridine mutagen potential to interact directly with cell chromatin. Additionally, it is demonstrated that MTX inhibit mutagenic activity of ICR191 in a dose-dependent manner. Furthermore, biological activity of ICR191-MTX mixtures corresponds with concentration of free mutagen form calculated using appropriate mathematical model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2013.03.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!