Essential Tremor is the most common form of movement disorder. Aggregation in families suggests a strong genetic component to disease. Linkage and association studies have identified several risk loci but the specific causal variants are still unknown. A recent study using whole exome sequencing identified a rare nonsense variant in the FUS gene (p.Q290X) that segregated with Essential Tremor in a large French Canadian family. In addition, two other rare FUS variants were identified (p.R216C and p.P431L) in Essential Tremor patients however co-segregation analysis with disease was not possible. In the present study, we sequenced all 15 exons of FUS in 152 familial probands with Essential Tremor and genotyped three reported FUS variants in 112 sporadic Essential Tremor patients and 716 control subjects recruited at Mayo Clinic Florida. Only known synonymous SNPs unlikely to be pathogenic were detected in our sequencing and not any of the recently identified mutations or novel ones. We conclude that the FUS mutations associated with risk of Essential Tremor are probably a rare occurrence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691340PMC
http://dx.doi.org/10.1016/j.parkreldis.2013.03.005DOI Listing

Publication Analysis

Top Keywords

essential tremor
28
sequencing identified
8
fus variants
8
tremor patients
8
essential
7
tremor
7
fus
6
investigating role
4
role fus
4
fus exonic
4

Similar Publications

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor.

Cerebellum

January 2025

Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.

View Article and Find Full Text PDF

Essential Tremor (ET) is the most common movement disorder and has a worldwide prevalence of 1%, including 5% of the population over 65 years old. It is characterized by an active, postural or kinetic tremor, primarily affecting the upper limbs, and is diagnosed based on clinical characteristics. The pathological mechanisms of ET, however, are mostly unknown.

View Article and Find Full Text PDF

Background: Essential tremor (ET) is the most common neurological movement disorder with few treatments and limited therapeutic efficacy, research into noninvasive and effective treatments is critical. Abnormal cerebello-thalamo-cortical (CTC) loop function are thought to be significant pathogenic causes of ET, with the cerebellum and cortex are common targets for ET treatment. In recent years, transcranial magnetic stimulation (TMS) has been recognized as a promising brain research technique owing to its noninvasive nature and safety.

View Article and Find Full Text PDF

Tremor is a rhythmic, involuntary oscillatory movement that severely affects some aspects of a patient's daily life. The use of wearable tremor-suppressing orthoses has become an effective, noninvasive treatment method for controlling tremors. This article summarizes recent developments in upper limb tremor suppression orthoses, aiming to provide a foundation for future research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!