Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The goal of this manuscript is to present a new methodology for real time analysis of time-varying electrical bioimpedance data. The approach assumes that the Fricke-Morse model of living tissues is meaningful and valid within the measured frequency range (10 kHz to 1 MHz). The parameters of this model are estimated in the whole frequency range with the presented method based on differential impedance analysis (DIA). The numerical accuracy of the developed approach has been validated and compared to complex nonlinear least square (CNLS) approach through simulations and also with experimental data from in vivo time-varying human lung tissue bioimpedance. The new developed method has demonstrated a promising performance for fast and easily interpretable information in real time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2013.03.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!