Reaction of [fc(NH2)2]RuCl2(PPh3)2 (fc = 1,1'-ferrocenylene) with 2 equiv of KO(t)Bu led to the formation of a diamido ruthenium complex, [fc(NH)2]Ru(PPh3)2, whose solid-state molecular structure revealed a short Fe-Ru distance. A metal-to-metal charge transfer band was observed in the electronic absorption spectrum of [fc(NH)2]Ru(PPh3)2. The Fe-Ru interaction was characterized by resonance Raman spectroscopy for the first time and also by (1)H NMR, UV-vis, NIR, Mössbauer spectroscopy, and X-ray crystallography. Density functional theory (DFT) calculations including natural bond order analysis, Bader's atom in molecules method, and time-dependent DFT (TDDFT) provided further support that the iron-ruthenium bond is a weak donor-acceptor interaction with iron acting as the Lewis base.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic400773s | DOI Listing |
Int J Mol Sci
August 2024
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy.
The search for new antineoplastic agents is imperative, as cancer remains one of the most preeminent causes of death worldwide. Since the discovery of the therapeutic potential of cisplatin, the study of metallodrugs in cancer chemotherapy acquired increasing interest. Starting from cisplatin derivatives, such as oxaliplatin and carboplatin, in the last years, different compounds were explored, employing different metal centers such as iron, ruthenium, gold, and palladium.
View Article and Find Full Text PDFChemistry
February 2024
Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
We present an in-depth study of the sterically demanding Cp-synthon (8-H-GuaH)Li isolated from natural product guaiazulene (Gua) as a ligand transfer reagent towards late transition metal complex precursors. The synthesis and full characterization of selected, essentially unexplored homo- and heteroleptic 8-H-guaiazulenide complexes of iron, ruthenium, cobalt, rhodium, platinum, copper and zinc are discussed in detail. In order to demonstrate their potential in catalytic applications, [(GuaH)PtMe ] was selected.
View Article and Find Full Text PDFDalton Trans
November 2016
Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, 1151 Richmond St. N., London, Ontario, CanadaN6A 5B7.
Upon efficient quaternization and salt metathesis of stable triethyl ferrocene/ruthenocene phosphines, styrene-based phosphonium triflate monomers with four different stoichiometric ratios of Fe/Ru were synthesized. Free-radical polymerization of the monomers afforded four polyelectrolytes (M: 38 650-69 100 g mol, Đ: 3.16-4.
View Article and Find Full Text PDFInorg Chem
May 2013
Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095, United States.
Reaction of [fc(NH2)2]RuCl2(PPh3)2 (fc = 1,1'-ferrocenylene) with 2 equiv of KO(t)Bu led to the formation of a diamido ruthenium complex, [fc(NH)2]Ru(PPh3)2, whose solid-state molecular structure revealed a short Fe-Ru distance. A metal-to-metal charge transfer band was observed in the electronic absorption spectrum of [fc(NH)2]Ru(PPh3)2. The Fe-Ru interaction was characterized by resonance Raman spectroscopy for the first time and also by (1)H NMR, UV-vis, NIR, Mössbauer spectroscopy, and X-ray crystallography.
View Article and Find Full Text PDFDalton Trans
March 2012
School of Chemical Sciences, Devi Ahilya University Indore, Indore, India.
Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!